Metal-organic framework materials as nano photocatalyst

Document Type: Review


1 School of Chemistry, College of Science, University of Tehran, Tehran, Islamic Republic of Iran

2 Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Islamic Republic of Iran



Photocatalytic degradation of toxic organic compound in water, soil and air by semiconductor catalysts such as TiO2 and ZnO have received much attention over the last two decades. However, the low quantum yield, easy agglomeration and difficult post-separation of these inorganic catalysts limit their application for large-scale applications. Metal-organic frameworks (MOFs) are the latest class of ordered porous solids that being intensively studied as a novel class of hybrid inorganic–organic material with ultrahigh porosity, enormous internal surface areas, together with the extraordinary tailorability of structure, dimension, size and shape. Recently exploring performance of MOFs as a new nanophotocatalyst is attracting interest of researchers working on the fields of chemistry, chemical engineering, materials science and others. Although the photocatytic application of MOF materials is still at the early stage compared with the other applications of them such as gas storage, separation, biomedical application and heterogeneous catalysis, the currently available results have demonstrated that the design and construction of MOFs for photocatalyst functionality is very active. The present review aims to introduce MOF materials, the synthesized methods and highlights the progress attempts for using them as a nanophotocatalyst for degradation of pollutants.


Main Subjects

[1] Ribeiro A.R., Nunes O. C., Pereira M. F. R., Silva A. M. T., (2015), An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environ. Inter. 75: 33-51.

[2]  Ibhadon A., Fitzpatrick P., (2013), Heterogeneous Photocatalysis: Recent Advances and Applications. Catalysts. 3: 189-218.

[3]  Spasiano D., Marotta R., Malato S., Fernandez-Ibañez P. , Di Somma I., (2015), Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Appl. Cat. B: Environ. 170–171: 90-123.

[4]  Koèí K., Obalová L., Matìjová L., Plachá D., Lacný Z., Jirkovský J., olcová O., (2009), Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal. B.: Environ. 89: 494-502.
[5]  Kaur J., Bansal S., Singhal S., (2013), Photocatalytic degradation of methyl orange using ZnO nanopowders synthesized via thermal decomposition of oxalate precursor method. Physica B: Condens. Matter. 416: 33-38.

[6]  You-ji L., Wei C., (2011), Photocatalytic degradation of Rhodamine B using nanocrystalline TiO2-zeolite surface composite catalysts: effects of photocatalytic condition on degradation efficiency. Catal. Sci. & Tech. 1: 802-809.

[7]  Tayade R. J., Natarajan T. S., Bajaj H. C., (2009), Photocatalytic Degradation of Methylene Blue Dye Using Ultraviolet Light Emitting Diodes. Indus. & Eng. Chem. Res. 48: 10262-10267.
[8]  Gupta A. K., Pal A., Sahoo C., (2006), Photocatalytic degradation of a mixture of Crystal Violet (Basic Violet 3) and Methyl Red dye in aqueous suspensions usingAg+ doped TiO2. Dyes and Pigm. 69: 224-232.

[9]  Sun J., Wang X., Sun J., Sun R., Sun S., Qiao L., (2006), Photocatalytic degradation and kinetics of Orange G using nano-sized Sn(IV)/TiO2/AC photocatalyst. J. Molec. Catal. A: Chemical. 260: 241-246.

[10] Ahmed S., Rasul M. G., MartensW. N., Brown R., Hashib M. A., (2010), Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination. 261: 3-18.

[11] Cieœla P., Kocot P., Mytych P., Stasicka Z., (2004), Homogeneous photocatalysis by transition metal complexes in the environment. J. Molec. Catal. A: Chemical. 224: 17-33.

[12] Kim S., Park H., Choi W., (2004), Comparative Study of Homogeneous and Heterogeneous Photocatalytic Redox Reactions: PW12O403- vs TiO2. J. Phys. Chem. B. 108: 6402-6411.

[13] Davar F., Majedi A., Mirzaei A., (2015), Green Synthesis of ZnO Nanoparticles and Its Application in the Degradation of Some Dyes. J. Am. Ceramic Soc.1: 1-8.

[14] Xuan J., Xiao W.-J., (2012), Visible-Light Photoredox Catalysis. Ang, Chem, Int, Ed, 51: 6828-6838.

[15] Phanikrishna Sharma M. V., Sadanandam G., Ratnamala A., Durga Kumari V., Subrahmanyam M., (2009), An efficient and novel porous nanosilica supported TiO2 photocatalyst for pesticide degradation using solar light. J. Hazard. Mater. 171: 626-633.

[16] Muthirulan P.,MeenakshisundararamM., Kannan N., (2013), Beneficial role of ZnO photocatalyst supported with porous activated carbon for the mineralization of alizarin cyaningreen dye in aqueous solution. J. Adv. Res. 4: 479-484.

[17] Xu Y., Langford C. H., (1997), Photoactivity of Titanium Dioxide Supported on MCM41, Zeolite X, and Zeolite Y. J. Phys. Chem. B. 101: 3115-3121.

[18] Zdravkov B., Èermák J., Šefara M., Jankù J., (2007), Pore classification in the characterization of porous materials: A perspective. Cen. Europ. J. Chem. 5: 385-395.
[19] Sing K. S.W., Schüth F., (2008), Handbook of Porous Solids, 24-33, Wiley-VCH Verlag GmbH.

[20] Geranmayeh S.,Abbasi A., Badiei A., (2011), Synthesis and Characterization of Nanoporous Carbon Materials. The Effect of Surfactant Concentrations and Salts. E-Journal Chem. 8: 54-59.

[21] Badiei A., Gholami J., Khaniani Y., (2009), Synthesis and Characterization of Titanium Supported on High Order Nanoporous Silica and Application for Direct Oxidation of Benzene to Phenol. E-Journal Chem. 6: 88-91.

[22] Davis M. E., Lobo R. F., (1992), Zeolite and molecular sieve synthesis. Chem. Mater. 4: 756-768.

[23] Subotiã B., Broniã J. , Antoniã Jeliã T., (2009), Ordered Porous Solids. Valtchev, V., Mintova, S. and Tsapatsis, M. (eds), 127-185, Elsevier, Amsterdam.

[24] Stock N., Biswas S., (2012), Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies,Morphologies, and Composites. Chem. Rev. 112: 933-969.

[25] Cohen S. M., (2012), Postsynthetic Methods for the Functionalization of Metal–Organic Frameworks. Chem. Rev.112: 970-1000.

[26] Rowsell J. L. C., Yaghi O. M., (2004), Metal–organic frameworks: a new class of porous materials. Microp. And Mesop. Mater. 73: 3-14.

[27] Hoskins B. F., Robson R., (1990), Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmiumcyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'’,4’’’- tetracyanotetraphenylmethane]BF4.xC6H5NO2. J. Am. Chem. Soc.112: 1546-1554.

[28] Li H., EddaoudiM., O’Keeffe M., Yaghi O. M., (1999), Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 402: 276-279.

[29] Chui S. S.-Y., Lo S. M.-F., Charmant J. P. H., Orpen A. G. , Williams, I.D. (1999), A Chemically FunctionalizableNanoporous Material [Cu3(TMA)2(H2O)3]n. Science. 283:1148-1150.

[30] Park H. J., Suh M. P., (2008), Mixed-Ligand Metal–Organic Frameworks with Large Pores: Gas Sorption Properties and Single-Crystal-to-Single-Crystal Transformation on Guest Exchange. Chem. An Europ. J. 14: 8812-8821.

[31] Batten S. R., Champness N. R., Chen X.-M., Garcia-Martinez J., Kitagawa S., Ohrstrom L., O’Keeffe M., Suh M. P., Reedijk J., (2012), Coordination polymers, metal-organic frameworks and the need for terminology guidelines. Cryst. Eng. Comm. 14: 3001-3004.

[32] Abbasi A., Geranmayeh S., Skripkin M. Y., Eriksson L., (2012), Potassium ion-mediated non-covalent bonded coordination polymers. Dalton Transact. 41: 850-859.

[33] Lin J.-B., Zhang J.-P., Chen X.-M., (2010), Nonclassical Active Site for Enhanced Gas Sorption in Porous Coordination Polymer. J. Am. Chem. Soc. 132: S 6654-6656.

[34] Cychosz K. A., Wong-Foy A. G., Matzger A. J.,S (2008), Liquid Phase Adsorption by Microporous Coordination Polymers: Removal ofOrganosulfur Compounds. J. Am. Chem. Soc. 130: 6938-6939.

[35] Fang Q.-R., Makal T. A., Young M. D., Zhou H.-C., (2010), Recent advaces in the study of mesoporous metal-organic frameworks Comments. Inorg. Chem. 31: 165-195.

[36] Liu Y., Kravtsov V. C., Larsen R., Eddaoudi M., (2006), Molecular building blocks approach to the assembly of zeolitelike metal-organic frameworks (ZMOFs) with extra-large cavities. Chem. Comm. 1488-1490.

[37] Park K. S., Ni Z., Côté A. P., Choi J. Y., Huang R., Uribe- Romo F. J., Chae H. K., O’Keeffe M., Yaghi O. M., (2006), Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National . Acad. Sci. 103: 10186-10191.

[38] Harbuzaru B. V., Corma A., Rey F., Atienzar P., Jordá J. L., García H., Ananias D., Carlos L. D., Rocha J., (2008), Metal– Organic Nanoporous Structures with Anisotropic Photoluminescence and Magnetic Properties and Their Useas Sensors. Ang. Chem. Int. Ed. 47: 1080-1083.

[39] Janiak C., Vieth J. K., (2010), MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 34: 2366-2388.

[40] Qiu S., Zhu G., (2009), Molecular engineering for synthesizing novel structures ofmetal–organic frameworks with multifunctional properties. Coordin. Chem. Rev. 253: 2891- 2911.

[41] Humphrey S.M., Chang J.-S., Jhung S. H., Yoon J.W.,Wood P. T., (2007), Porous Cobalt(II)–Organic Frameworks with CorrugatedWalls: Structurally Robust Gas-SorptionMaterials. Ang. Chem. Int. Ed. 46: 272-275.

[42] Seo J. S., Whang D., Lee H., Jun S. I., Oh J., Jeon Y. J., Kim K., (2000), A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature. 404: 982-986.

[43] Yoon J.W., Jhung S. H., Hwang Y. K., Humphrey S. M., Wood P. T., Chang J. S., (2007), Gas-Sorption Selectivity of CUK-1: A Porous Coordination Solid Made of Cobalt(II) and Pyridine-2,4- Dicarboxylic Acid. Adv. Mater. 19: 1830-1834.

[44] An J., Geib S. J., Rosi N. L., (2009), Cation-Triggered Drug Release from a Porous Zinc”Adeninate Metal”Organic Framework. .J. Am. Chem. Soc. 131: 8376-8377.

[45] Ockwig N. W., Delgado-Friedrichs O., O’Keeffe M. , Yaghi O. M., (2005), Reticular Chemistry: Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks. Accoun. Chem. Res. 38: 176-182.

[46] Batten S. R., Neville S.M., Turner D. R., (2009), Coordination Polymers: Design, Analysis and Application. 238-256, The Royal Society of Chemistry.

[47] Geranmayeh S.,AbbasiA., Skripkin M.Y., Badiei A., (2012), Anovel 2D zinc metal–organic framework: Synthesis, structural characterization and vibrational spectroscopic studies. Polyhedron. 45: 204-212.

[48]AbbasiA., Tarighi S., Badiei A., (2012),Athree-dimensional highly stable cobalt(II) metal–organic framework based on terephthalic acid: synthesis, crystal structure, thermal and physical properties. Trans. Metal Chem. 37: 679-685.

[49] Geranmayeh S., Abbasi A., (2013), Simultaneous Growing of Two New Cd(II) Metal–Organic Frameworks with 2,6-Naphthalendicarboxylic Acid as New Precursors for Cadmium(II) Oxide Nanoparticles: Thermal, Topology and Structural Studies. J. Inorg. Organomet. Polymers and Mater. 23: 1138-1144.

[50] Abbasi A., Geranmayeh S., Vala S., Juibari N., Badiei A., (2012), Synthesis and characterization of tetrapyridophenazine ligand and its novel 1-D metal-organic wave-like coordination polymer of Ni(II) ion. Zeitschrift für Kristallographie - Crystall. Mater. 227: 688-693.

[51] Bang J. H., Suslick K. S., (2010), Applications of Ultrasound to the Synthesis of Nanostructured Materials. Adv. Mater. 22: 1039-1059.

[52] Geranmayeh S., Abbasi A., Zarnani A.-H., Skripkin M. Y., (2013), A novel trinuclear zinc metal–organic network: Synthesis, X-ray diffraction structures, spectroscopic and biocompatibility studies. Polyhedron 61: 6-14.

[53] Tarighi S., Abbasi A., Geranmayeh S., Badiei A., (2013), Synthesis of a NewInterpenetratedMixed Ligand Ni(II)Metal– Organic Framework: Structural, Thermal and Fluorescence Studies and its Thermal Decomposition to NiO Nanoparticles. J. Inorg. Org. Polym. Mater. 23: 808-815.

[54] Tranchemontagne D. J., Hunt J. R., Yaghi O. M., (2008), Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF. Tetrahedron. 64: 8553-8557.

[55] Cravillon J., Münzer S., Lohmeier S.-J., Feldhoff A., Huber K., Wiebcke M., (2009), Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework. Chem. Mater. 21: 1410-1412.

[56] Klimakow M., Klobes P., Thünemann A. F., Rademann K., Emmerling F., (2010), Mechanochemical Synthesis of Metal”Organic Frameworks: A Fast and Facile Approach towar Quantitative Yields and High Specific Surface Areas. Chem. of Mater. 22: 5216-5221.

[57] Ameloot R., Stappers L., Fransaer J., Alaerts L., Sels B. F., De Vos D. E., (2009), Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chem. Mater. 21: 2580-2582.

[58] Fernández-Bertran J. F., (1999), Mechanochemistry: An overview. Pure and Appl. Chem. 71: 581-586.

[59] Boldyrev V. V. , Tkáèová K., (2000), Mechanochemistry of Solids: Past, Present, and Prospects. J. Mater. Syn. Proces. 8: 121-132.

[60] Beyer M. K., Clausen-Schaumann H., (2005), Mechanochemistry: The Mechanical Activation of Covalent Bonds. Chem. Rev. 105: 2921-2948.

[61] Kaupp G., (2009),Mechanochemistry: the varied applications of mechanical bond-breaking. Cryst. Eng. Comm. 11: 388-403.

[62] Garay A. L., Pichon A., James S. L., (2007), Solvent-free synthesis of metal complexes. Chem. Soc. Rev. 36: 846-855.

[63] Pichon A., Lazuen-Garay A., James S. L., (2006), Solventfree synthesis of a microporousmetal-organic framework. Cryst. Eng. Comm. 8: 211-214.

[64] Friscic T., (2010), New opportunities for materials synthesis using mechanochemistry. J. Mater. Chem. 20: 7599-7605.

[65] Klinowski J., Almeida Paz F. A., Silva P., Rocha J., (2011), Microwave-Assisted Synthesis ofMetal-Organic Frameworks. Dalton Transacti. 40: 321-330.

[66] Choi J.-Y., Kim J., Sung-Hwa J., Kim H.-K., Chang J.-S., Chae H. K., (2006), Microwave Synthesis of a Porous Metal-Organic Framework, Zinc Terephthalate MOF-5. Bulleti. Korean Chem. Soc. 27: 1523-1524.

[67] Khan N. A., Jhung S. H., (2015), Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: Rapid reaction, phase-selectivity, and size reduction. Coordin. Chem. Rev. 285: 11-23.

[68] Furukawa H., Cordova K. E., O’Keeffe M., Yaghi O. M., (2013), The Chemistry and Applications of Metal-Organic Frameworks. Science 341.

[69] Lickiss P. D., (2000), Ultrasound in Chemical Synthesis, The New Chemistry. pp. 76-84, Cambridge University Press. [70] Frišèiã T., Reid D. G., Halasz I., Stein R. S., Dinnebier R. E., Duer M. J., (2010), Ion- and Liquid-Assisted Grinding: Improved Mechanochemical Synthesis of Metal–Organic Frameworks Reveals Salt Inclusion and Anion Templating.Angew. Chem. Int. Ed. 49: 712-715.

[71] Alavi M. A., Morsali A., (2014), Ultrasound assisted synthesis of {[Cu2(BDC)2(dabco)].2DMF.2H2O} nanostructures in the presence of modulator; new precursor to prepare nano copper oxides. Ultrason. Sonochem. 21: 674-680.

[72] Li Z.-Q., Qiu L.-G., Xu T., Tu Y., Wang W., Wu Z.-Y., Jiang X., (2009), Ultrasonic synthesis of the microporous metal– organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Mater. Lett. 63: 78-80.

[73] Tahmasian A., Morsali A., (2012), Ultrasonic synthesis of a 3D Ni(II) Metal–organic framework at ambient temperature and pressure: New precursor for synthesis of nickel(II) oxide nano-particles. Inorg. Chim. Acta. 387: 327-331.

[74] Fujishima A. , Honda K., (1972), Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 238: 37-38.

[75] Khan M. M., Ansari S. A., Pradhan D.,Ansari M. O., Han D. H., Lee J., Cho M. H., (2014), Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A. 2: 637-644.

[76] Nakata K., FujishimaA., (2012), TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochem. Rev. 13: 169-189.

[77] Zhang J., Zhou P., Liu J., Yu J., (2014), New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physic. Chem. Chem. Phys. 16: 20382- 20386.

[78] Gupta S. M., Tripathi M., (2011), A review of TiO2 nanoparticles. Chinese Sci. Bull. 56: 1639-1657.
[79] Beydoun D., Amal R., Low G., Mc Evoy S., (1999), Role of Nanoparticles in Photocatalysis. J. Nanopart. Res. 1: 439-458.

[80] Kumar S. G., Rao K. S. R. K., (2015), Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. RSC Adv. 5: 3306-3351.

[81]Wang Q., Jiang H., Zang S., Li J.,Wang Q., (2014), Gd, C, N and P quaternary doped anatase-TiO2 nano-photocatalyst for enhanced photocatalytic degradation of 4-chlorophenol under simulated sunlight irradiation. J. Alloys Comp. 586: 411-419.

[82] Rajbongshi B. M., Samdarshi S. K., (2014), Cobalt-doped zincblende–wurtzite mixed-phase ZnO photocatalyst nanoparticles with high activity in visible spectrum. Appl. Catal. B: Environ. 144: 435-441.

[83] Mahata P., Madras G., Natarajan S., (2006), Novel Photocatalysts for the Decomposition of Organic Dyes Based on Metal-Organic Framework Compounds. J. Phys. Chem.B. 110: 13759-13768.

[84] Tachikawa T., Choi J. R., Fujitsuka M., Majima T., (2008), Photoinduced Charge-Transfer Processes on MOF-5 Nanoparticles: Elucidating Differences betweenMetal-Organic Frameworks and SemiconductorMetal Oxides. J. Phys. Chem. C. 112: 14090-14101.

[85] Llabrés i Xamena F. X., Corma A., Garcia H., (2007), Applications for Metal”Organic Frameworks (MOFs) as Quantum Dot Semiconductors. J. Phys. Chem. C. 111: 80-85.

[86] Alvaro M., Carbonell E., Ferrer B., Llabrés i Xamena F. X., Garcia H., (2007), Semiconductor Behavior of aMetal-Organic Framework (MOF). Chem. – A Europ. J. 13: 5106-5112.

[87] Hagfeldt A., Graetzel M., (1995), Light-Induced Redox Reactions in Nanocrystalline Systems. Chem. Rev. 95: 49-68.

[88] Binnemans K., (2009), Lanthanide-Based Luminescent Hybrid Materials. Chem. Rev. 109: 4283-4374.

[89] Allendorf M. D., Bauer C. A., Bhakta R. K., Houk R. J. T., (2009), Luminescent metal-organic frameworks. Chem. Soc. Rev. 38: 1330-1352.

[90] Choi J. R., Tachikawa T., Fujitsuka M., Majima T., (2010), Europium-BasedMetal”Organic Framework as a Photocatalyst for the One-Electron Oxidation of Organic Compounds. Langm. 26: 10437-10443.

[91] Yang S. J., Im J. H., Kim T., Lee K., Park C. R., (2011), MOF-derived ZnO and ZnO@C composites with high photocatalytic activity and adsorption capacity. J. Hazard. Mater. 186: 376-382.

[92] Kojima A., Teshima K., Shirai Y., Miyasaka T., (2009), Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131: 6050-6051.

[93] Walsh A., Catlow C. R. A., (2010), Photostimulated Reduction Processes in a Titania Hybrid Metal–OrganicFramework. Chem. Phys.Chem. 11: 2341-2344.

[94] Gascon J., Hernández-Alonso M. D., Almeida A. R., van Klink G. P. M., Kapteijn F., Mul G., (2008), Isoreticular MOFs as Efficient Photocatalysts with Tunable Band Gap: An Operando FTIR Study of the Photoinduced Oxidation of Propylene. Chem. Sus. Chem. 1: 981-983.

[95] Du J.-J., Yuan Y.-P., Sun J.-X., Peng F.-M., Jiang X., Qiu L.- G., XieA.-J., Shen Y.-H., Zhu J.-F., (2011), New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye. J. Hazard. Mater. 190: 945-951.

[96] Ai L., Zhang C., Li L., Jiang J., (2014), Iron terephthalate metal–organic framework: Revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl. Catal. B: Environ. 148–149: 191-200.

[97] Zhou T., Du Y., Borgna A., Hong J., Wang Y., Han J., Zhang W., Xu R., (2013), Post-synthesis modification of a metal– organic framework to construct a bifunctional photocatalyst for hydrogen production. Energy & Environ. Sci. 6: 3229-33.

[98] Wang C., deKrafft K. E., Lin W., (2012), Pt nanoparticles@photoactivemetal-organic frameworks: efficient
hydrogen evolution via synergistic photoexcitation and electron injection. J. Am. Chem. Soc. 134: 7211-7214.

[99] WangX.,Maeda K., ThomasA., Takanabe K., Xin G., Carlsson J. M., Domen K., Antonietti M., (2009), Nat.. Mater. 8: 76-81.

[100] Fateeva A., Chater P. A., Ireland C. P., TahirA.A., Khimyak Y. Z., Wiper P. V., Darwent J. R., Rosseinsky M. J., (2012), A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew. Chem. Int. Ed. Eng. 51: 7440-7444.

[101] Fu Y., Sun D., Chen Y., Huang R., Ding Z., Fu X., Li Z., (2012), An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew. Chem. Int. Ed. Eng. 51: 3364-3367.

[102] Long J., Wang S., Ding Z., Wang S., Zhou Y., Huang L., Wang X., (2012), Amine-functionalized zirconium metalorganic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chem. Commun. (Camb) 48: 11656-11658.

[103] Horiuchi Y., Toyao T., Saito M., Mochizuki K., Iwata M., Higashimura H., AnpoM.,MatsuokaM., (2012), Visible-Light- Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal–Organic Framework. J.
Phys. Chem. C. 116: 20848-20853.

[104] Chatti R., Rayalu S. S., Dubey N., Labhsetwar N., Devotta S., (2007), Solar-based photoreduction of methyl orange using zeolite supported photocatalytic materials. Solar Energy Mater. Solar Cells. 91: 180-190.

[105] Yu Y., Wang J., Parr J. F., (2012), Preparation and properties of TiO2/fumed silica composite photocatalytic
materials. Procedia Eng. 27: 448-456.

[106] Artkla S., Wantala K., Srinameb B.-o., Grisdanurak N., Klysubun W., Wittayakun J., (2009), Characteristics and photocatalytic degradation of methyl orange on Ti-RH-MCM-41 and TiO2/RH-MCM-41. Korean J. Chem. Eng. 26: 1556-1562.

[107] Li Y., Li X., Li J. ,Yin J., (2006), Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Research 40: 1119-1126.

[108] Das M. C., Xu H.,Wang Z., Srinivas G., ZhouW., Yue Y.-F., Nesterov V. N., Qian G., Chen B., (2011), A Zn4O-containing doubly interpenetrated porous metal-organic framework for photocatalytic decomposition of methyl orange. Chem. Communic. 47: 11715-11717.

[109] Pu S., Xu L., Sun L., Du H., (2015), Tuning the optical properties of the zirconium–UiO-66 metal–organic framework for photocatalytic degradation of methyl orange. Inorg. Chem. Communic.52:50-52. 

[110] Zhu W., Yang X.-Y., Li Y.-H., Li J.-P., Wu D., Gao Y., Yi F.-Y., (2014), A novel porous molybdophosphate-based FeII,III-MOF showing selective dye degradation as a recyclable photocatalyst. Inorg. Chem. Communic. 49: 159-162.

[111] Liang R., Jing F., Shen L., Qin N., Wu L., (2015), MIL- 53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. J. Hazard. Mater. 287: 364-372.

[112] Liu C.-B., Sun H.-Y., Li X.-Y., Bai H.-Y., Cong Y., Ren A., Che G.-B., (2014), New photocatalyst for the degradation of organic dyes based on [Cu(ONCP)(4,42 -BPDA)1/2(H2O)·(4,42 -H2BPDA)]n. Inorg. Chem. Communic. 47: 80-83.

[113] Liu C.-B., Cong Y., Sun H.-Y., Che G.-B., (2014), Structure and photocatalytic performance of a new metal-organic framework based on [Zn(TBTC)(2,6-pydc)]n. Inorg. Chem. Communic. 47: 71-74.

[114] Sun H.-Y., Liu C.-B., Cong Y., Yu M.-H., Bai H.-Y., Che G.- B., (2013), New photocatalyst for the degradation of organic dyes based on [Co2(1,4-BDC)(NCP)2]n·4nH2O. Inorg. Chem. Communic. 35: 30-134.