[γ-Fe2O3-HAp-(CH2)3-NHSO3H] nanoparticles as a highly efficient and magnetically separable catalyst for green one-pot synthesis of 4(3H)-Quinazolinones

Document Type: Reasearch Paper

Authors

Department of Applied Chemistry, Faculty of Science, Islamic Azad University, South Tehran Branch, Tehran, Iran.

10.7508/ijnd.2015.05.004

Abstract

Quinazolinone derivatives are essential units in a wide range of relevant pharmacophores with a broad spectrum of abilities. Due to their wide range of pharmacological and therapeutic activities including anticonvulsant, anti-inflammatory, hypolipidemic, anticancer, and anti-ulcer, the synthesis of quinazolinone moieties as a privileged class of fused heterocyclic compounds, have received much attention. An efficient and one-pot three components route was developed for the synthesis of 4(3H)-quinazolinones using commercially available starting materials. In order to synthesis of target compounds in good to excellent yields, a reaction between isatoic anhydride, acylchlorides, and amines in the presence of propylsulfamic acid functionalized magnetic hydroxyapatite nanoparticle [γ-Fe2O3-HAp-(CH2)3-NHSO3H], as a highly efficient and magnetically separable Brønsted acid catalyst, was performed. The organic layer was dried over anhydrous Na2SO4 and filtered. The filtrate was concentrated under vacuum and the residue was recrystallized from 96% EtOH to give 2,3-disubstituted 4-(3H)-quinazolinone derivatives in high yield. The reaction condition including the solvents, the amount of [γ-Fe2O3-HAp-(CH2)3-NHSO3H], reaction time and required temperature was optimized.

Keywords

Main Subjects


[1]  Mhaske S. B., Argade N. P., (2006), The chemistry of recently isolated naturally occurring quinazolinone alkaloids. Tetrahed. 62: 9787-9826.

[2]  Stephenson K. A., Wilson A. A., Houle S., Vasdev N., (2011), Synthesis and in vitro evaluation of derivatives of the Âhyperlink. Bioorg. Med. Chem. Lett. 21: 5506-5509.

[3]  Potter R., Horti A. G., Ravert H. T., Holt D. P., Finley P., Scheffel U., Dannals R. F., Wahl R. L., (2011), Division of Nuclear Medicine, Department of Radiology. Bioorg. Med. Chem. 19: 2368-2372.

[4]  Wolfe J. F., Rathman T. L., Sleevi M. C., Campbell J. A., Greenwood T. D., (1990), Synthesis and anticonvulsant activity of some new 2-substituted 3-aryl-4(3H)- quinazolinones. J. Med. Chem. 33: 161-166.

[5]  Kenichi O., Yoshihisa Y., Toyonari O., Toru I., Yoshio I., (1985), Studies on 4(1H)-Quinazolinones. 5. Synthesis and Antiinflammatory Activity of 4(1H)-Quinazolinone Derivatives. J. Med. Chem. 28: 568-576.

[6]  Kurogi Y., Inoue Y., Tsutsumi K., Nakamura S., Nagao K., Yohsitsugu H., Tsuda Y., (1996), Synthesis and Hypolipidemic Activities of Novel 2-[4-(Diethoxyphosphoryl)methyl]phenyl]quinazolines and 4(3H)-Quinazolinones. J. Med. Chem. 39: 1433-1437.

[7]  Cao S. L., Feng Y. P., Jiang Y. Y., Liu S. Y., Ding G. Y., Li R. T., (2005), Synthesis and in vitro antitumor activity of 4(3H)-quinazolinone derivatives with dithiocarbamate side chains. Bioorg. Med. Chem. Lett. 15: 1915-1917.

[8]  Terashima K., Shimamura H., Kawase A., Tanaka Y., Tanimura T., Kamisaki T., Ishizuka Y., Sato M., (1995), Studies on Antiulcer Agents. IV. Antiulcer Effects of 2-Benzylthio-5, 6, 7, 8-tetrahydro-4(3H)-quinazolinones and Related Compounds. Chem. Pharm. Bull. 43: 2021-2023.

[9]  Armarego W. L. F., (1967), Fused Pyrimidines, Part 1:Quinazolines; Interscience: New York.

[10] Adib M., Sheikhi E., Bijanzadeh H. R., (2012), One-Pot Three-Component Synthesis of 4(3H)-Quinazolinones from Benzyl Halides, Isatoic Anhydride and Primary Amines. Synlett. 23: 85.88.

[11] Dabiri M., Salehi P., Khajavi M. S., Mohammadi A. A., (2004), Microwave-assisted One-Pot Three Component Synthesis of Some New 4(3H)-Quinazolinone Derivatives. Heterocyc. 63: 1417-1421.

[12] Chen J., Su W., Wu H., Liu M., Jin, C., (2007), Ecofriendly synthesis of 2,3-dihydroquinazolin-4-ones in ionic liquids or ionic liquid.water without additional catalyst. Green Chem. 9: 972-75.

[13] Dabiri M., Salehi P., Baghbanzadeh M., Ionic Liquid Promoted Eco-friendly and Efficient Synthesis of 2,3-Dihydroquinazolin-4(1H)-ones. Monatsh. Chem. 138: 1191-1194.

[14] Khalafi-Nezhad A., Haghighi S. M., Purkhosrow A., Panahi F., (2012), An Efficient One-Pot Access to Quinazolinone Derivatives Using TiO2 Nanoparticles as Catalyst: Synthesis

and Vasorelaxant Activity Evaluation. Synlett. 23: 920-924.

[15] Hikawa H., Ino Y., Suzuk I., Yokoyama Y., (2012), Pd- Catalyzed Benzylic C.H Amidation with Benzyl Alcohols in Water: A Strategy To Construct Quinazolinones. J. Org. Chem. 77: 7046-7051.

[16] Dabiri M., Baghbanzadeh M., Delbari A. S., (2008), Novel and Efficient One-Pot Tandem Synthesis of 2-Styryl-Substituted 4(3H)-Quinazolinones. J. Comb. Chem. 10: 700.703.

[17] Nagashima T., Chu Q., (2007), Fluorous synthesis of sclerotigenin-type benzodiazepine.quinazolinones. Tetrahedron Lett. 49: 563-565.

[18] Baghbanzadeh M., Dabiri M., Salehi P., (2008), New Efficient Method for the Three-Component Synthesis of 4(3H)-Quinazolinones. Heterocyc. 75: 2809-2815.

[19] Abdel-Jalil R. J., Volter W., Saeed M., (2004), A novel method for the synthesis of 4(3H)-quinazolinones. Tetrahedron Lett. 45: 3475-3476.

[20] Wang G. W., Miao C. B., Kang H., (2006), Benign and Efficient Synthesis of 2-Substituted 4(3H)-Quinazolinones Mediated by Iron(III) Chloride Hexahydrate in Refluxing Water. Bull. Chem. Soc. Jap. 79: 1426-1430.

[21] Lingaiah B. V., Ezikiel G., Yakaiah T., Reddy G. V. T., Rao P. S., (2006), An Efficient and Recyclable Heterogeneous Catalyst for the One-Pot Synthesis of 2,3-Disubstituted 4-(3H)-Quinazolinones under Solvent-Free Microwave Irradiation Conditions. Synlett. 15: 2507-2509.

[22] Rad Moghadam K., Mamghani M., Samavi L., (2006), Convergent One Pot Synthesis of 3 Substituted Quinazolin- 4(3H)-ones under Solvent-Free Conditions. Synth. Commun. 36: 2245-2252.

[23] Arundhathi R., Damodara D., Likhar P. R., Kantam M. L., Saravanan P., Magdaleno T., Kwon S. H., (2011), Fe3O4@mesoporouspolyaniline: A Highly Efficient and Magnetically Separable Catalyst for Cross-Coupling of Aryl Chlorides and Phenols. Adv. Synth. Catal. 353: 2875-2883.

[24] Yang S., Wu C., Zhou H., Yang Y., Zhao Y., Wang C., Yang W., Xu J., (2013), An Ullmann C-O Coupling Reaction Catalyzed by Magnetic Copper Ferrite Nanoparticles. Adv.

Synth. Catal. 355: 53-58.

[25] Cano R., Yus M., Ramon J., (2012), Impregnated Platinum on Magnetite as an Efficient, Fast, and Recyclable Catalyst for the Hydrosilylation of Alkynes. ACS Catal. 2: 1070-1078.

[26] Saidi A., Mirzaei M., (2015), MCR of the quenching of the EEM of fluorescence of Aflatoxins (B1, G1) by Gold nanoparticles. Int. J. Nano Dimens. 6: 31-38.

[27] Otoufi M. K., Shahtahmasebebi N., Kompany A., Goharshadi E., (2014), A systematic growth of Gold nanoseeds on Silica for Silica@Gold core-shell nanoparticles and investigation of optical properties. Int. J. Nano Dimens. 5: 525-531.

[28] Kiani G. R., Saghatforoush L., Mahdavinia G. R., Geckeler K. E., (2011), Synthesis of gold nanoparticles: a new approach in using a nanoporous membrane in conjunction with ultrasonication. Int. J. Nano Dimens. 1: 275-278.

[29] Zeng T., Chen W., Cirtiu C. M., Moores A., Song G., Lee C. G., (2010), Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem. 12: 570-573.

[30] Sheykhan M., Mamani L., Ebrahimi A., Heydari A., (2011), Sulfamic acid heterogenized on hydroxyapatiteencapsulated ã-Fe2O3 nanoparticles as a magnetic green interphase catalyst. J. Mol. Catal. A: Chem. 335: 253-261.

[31] Saidi A., Mirzaei M., (2015), MCR of the quenching of the EEM of fluorescence of Aflatoxins (B1, G1) by Gold nanoparticles. Int. J. Nano Dimens. 6: 31-38.

[32] Otoufi M. K., Shahtahmasebebi N., Kompany A., Goharshadi E., (2014), A systematic growth of Gold nanoseeds on Silica for Silica@Gold core-shell nanoparticles and investigation of optical properties. Int.J. Nano Dimens. 5: 525-531.

[33] Kiani G. R., Saghatforoush L., Mahdavinia G. R., Geckeler K. E., (2011), Synthesis of gold nanoparticles: A new approach in using a nanoporous membrane in conjunction with ultrasonication. Int. J. Nano Dimens. 1: 275-278.

[34] Charette A. B., Grenon M., Lemire A., Pourashraf M., Martel J., (2001), Practical and Highly Regio- and Stereoselective Synthesis of 2-Substituted Dihydropyridines and Piperidines:Application to the Synthesis of (-)-Coniine. J. Am. Chem. Soc. 123: 11829-11830.

[35] Dabiri M., Salehi P., Mohammadi A. A., Baghbanzadeh M., (2005), One Pot Synthesis of Mono and Disubstituted (3H) Quinazolin 4 ones in Dry Media Under Microwave Irradiation. Synth. Commun. 35: 279-287.

[36] Bhat B. A., Sahu D. P., (2004), One Pot Synthesis of 4(3H)Quinazolinones. Synth. Commun. 34: 2169-72.