Preparation and characterization of Graphene/Nickel Oxide nanorods composite

Document Type: Reasearch Paper


1 Department of Physics, Islamic Azad University, branch Qom, Qom, Iran.

2 Department of Physics, Tarbiat Modares University, Tehran, Iran.



Graphene-based nanocomposites are newly emerged materials with a wide range of applications such as in supercapacitors electrode. The high conductivity and ability for passing electric current, makes Graphene an appropriate new item to be used in cells. Electroactive transition metal oxides, owing fast reversible redox pairs, are used to store electrical charge. Furthermore, the Graphene/NiO nanocomposites can be used to improve the electrochemical properties of NiO. Here we report a new and facile route for synthesizing Graphene/NiO nanorods composite (GNC). High-quality few-layer Graphene/NiO nanorod composite (GNC) is synthesized via solvothermal method. Solution phase exfoliation of graphite is investigated in N-Methyl-Pyrrolidone (NMP). The existence of few-layer graphene is confirmed by Raman spectroscopy while presence of NiO is demonstrated by UV-Vis spectroscopy (UV) and X-ray diffraction (XRD) pattern. The Field Emission Scanning Electron Microscopy (FESEM) and X-ray diffraction (XRD) pattern also provide proof of GNC on graphene. Images indicate NiO nanorods with average diameter of 35 nm and 100 nm lengths, deposited on graphene.


Main Subjects

[1]      Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., (2004), Electric field effect in atomically thin carbon films. Science 22: 666-669.

[2]      Geim A. K., Novoselov K. S., (2007), The rise of graphene. Nature Mater. 6: 183-191.

[3]      Stankovich S. Dikin D. A., Dommett G. H. B., Kohlhaas K. M., Zimney E. J., Stach E. A.,(2006), Graphene-based composite materials. Nature 10:282–286.

[4]      Kalaitzidou K., Fukushima H., Askeland P., Drzal L. T., (2008),The nucleating effect of exfoliated graphite nanoplatelets and their influence on the crystal structure and electrical conductivity of polypropylene nanocomposites, J. Mater. Sci. 43: 2895-2907.

[5]      Jang B. Z., Zhamu A., (2008), Processing of nanographene platelets (NGPs) and NGP nanocomposites: A review, J. Mater. Sci. 43: 5092-5101.

[6]      Xu C., Wang X., Zhu J. W., Yang X. J., Lu L. D., (2008), Deposition of Co3O4 nanoparticles onto exfoliated graphite oxide sheets. J. Mater. Chem. 18: 5625–5629.

[7]      Nethravathi C., Nisha T., Ravishankar N., Shivakumara C., Rajamathi M., (2009), Graphene-nanocrystalline metal sulphide composites produced by a one-pot reaction starting from graphite oxide. Carbon 47: 2054–2059.

[8]      Williams G., Kamat P. V., (2009), Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25: 13869-13873.

[9]      Yang X., Zhang X. Y., Ma Y. F., Huang Y., Wang Y. S., Chen Y. S., (2009), Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 19: 2710-15.

[10]  Wang D. H., Choi D. W., Li J., Yang Z. G., Nie Z. M., Kou R., (2009), Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3: 907–914.

[11]  Paek S. M., Yoo E., Honma I., (2009), Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett. 9: 72-75.

[12]  Williams G., Seger B., Kamat P. V., (2008), TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2: 1487-1491.

[13]  Yao J., Shen X. P., Wang B., Liu H. K., Wang G. X., (2009), In situ chemical synthesis of SnO2–graphenenanocomposite as anode materials for lithium-ion batteries. Electrochem. Commun. 11: 1849-1852.

[14]  D. W. Wang, F. Li, J. Zhao, W. Ren, Z. G. Chen, J. Tan, (2011), Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode. ACS Nano 56: 5815–5822.

[15]  Biswas S., Drzal L. T., (2010), Multilayered Nano architecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes. Chem. Mater. 22: 5667–5671.

[16]  Cericola D., Kötz R., Wokaun A., (2011), Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes. Power Sources. 196: 3114-3118.

[17]  Kottegoda I. R. M., Idris N. H., Lua L., Wang J. Z., Liu H. K., (2009),  Synthesis and characterization of graphene–nickel oxide nanostructures for fast charge–discharge application.  Electrochim. Acta 3: 1745–1752.

[18]  Makhlouf S. A., Kassem M. A., Abdel-Rahim M. A., (2009), Particle size-dependent electrical properties of nanocrystalline NiO. J. Mater. Sci. 44: 3438-3444.

[19]  Garcia-Cerda L. A., Romo-Mendoza L. E., Quevedo-Lopez M. A., (2009), Synthesis and characterization of NiO nanoparticles and their PMMA nanocomposites obtained by in situ bulk polymerization. J. Mater. Sci. 44: 4553-4558.

[20]  Yuan C. Z., Xiong S. L., Zhang X. G., Shen L. F., Zhang F., Gao B., (2009), Template-free synthesis of ordered mesoporous NiO/poly (sodium-4-styrene sulfonate) functionalized carbon nanotubes composite for electrochemical capacitors. Nano Res. 2: 722-732.

[21]  Lang J. W., Kong L. B., Wu W. J., Luo Y. C., Kang L., (2009), Synthesis, characterization, and electrochemical properties of Ni(OH)2/ultra-stable Y zeolite composite. Mater. Sci. 44: 4466-4471.

[22]  Lv X., Huang Y., Liu Z. B., Tian J. G., Wang Y., Ma Y. F., (2009), Photoconductivity of Bulk-Film-Based Graphene Sheets. Small 5: 1682-1687.

[23]  Choi H. J., Jung S. M., Seo J. M., Chang D. W., Dai L., Baek J. B., (2012), Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1: 534–551.

[24]  Zhang X., Coleman A. C., Katsonis N., Browne W. R., Wees B. J., Feringa B. L., (2010),  Dispersion of graphene in ethanol using a simple solvent exchange method. Chem. Commun. 46: 7539–7541.

[25]  Varkey A. J., Fort A. F., (1993), Solution Growth Technique for Deposition of Nickel Oxide Thin Films. Thin Solid Film. 235: 47–50.

[26]  Yamamoto H., Tanaka S., Hirao K., (2003), Effects of Substrate Temperature on Nanostructure and Band Structure of Sputtered Co3O4 thin films. Appl. Phys. 93: 4159–62.

[27]  Soriano L., Abbate M., Fernandez A., Gonzalez-Elipe A. R., Sanz J. M., (2003), The Electronic Structure of Mesoscopic NiO Particles. Chem. Phys. Lett. 208: 460–463.

[28] Choi W., Lee J., (2012), Graphene Synthesis and Applications. CRC Press Taylor & Francis Group, ISBN 978-1-4398-6187-5 (hardback).