Spectral study of interaction between Silica nanoparticles and molecules of photochromic spirocompounds in solutions

Document Type : Reasearch Paper


1 Photochemistry Center FSRC "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, Russia.

2 Interdepartmental Center of Analytical Research of the Russian Academy of Sciences, Moscow, Russia.

3 Institute of Petrochemistry and Catalysis, Ufa FRC of the Russian, Academy of Sciences, Ufa, Russia.

4 N. N. Semenov FRC of Chemical Physics of the Russian Academy of Sciences, Москва, Russiа.


A comparative spectral study of water–acetonitrile systems containing photochromic spiropyran and spirooxazine derivatives in the absence and in the presence of silica nanoparticles was carried out. The photoinduced formation of proton complexes beetwen phenolic oxygen of the colored forms of spirocompounds and the surface hydroxyl groups of silica nanoparticles was established for all of the derivatives. The photoinduced proton complexes of the spiropyrans exhibit positive photochromism on the surface of silica nanoparticles. It is assumed that the previously discovered negative photochromism is due to the formation of proton complexes with not only phenolic oxygen, but also the OH group at the nitrogen atom of the indoline spiropyran moiety. These complexes can also exist in the absence of nanoparticles, because of interaction with water molecules.


[1] Yamaguchi T., Maity A., Polshettiwar V., Ogawa M., (2017), Photochromism of a spiropyran in the presence of a dendritic fibrous nanosilica; simultaneous photochemical reaction and adsorption. J. Phys. Chem. A. 121: 8080-8085.
[2] Yamaguchi T., Maity A., Polshettiwar V., Ogawa M., (2018), Negative photochromism based on molecular diffusion between hydrophilic and hydrophobic particles in the solid state. Inorg. Chem. 57: 3671-3674.
[3] Kinashi K., Nakamura S., Imamura M., Ishida K., Ueda Y., (2012), The mechanism for negative photochromism of spiropyran in silica. J. Phys. Org. Chem. 25: 462-466.
[4] Kinashi K., Nakamura S., Ono Y., Ishida K., Ueda Y., (2010), Reverse photochromism of spiropyran in silica. J. Photochem. Photobiol. A. 213: 136-140.
[5] Kinashi K., Harada Y., Ueda Y., (2008), Thermal stability of merocyanine form in spiropyran/silica composite film. Thin solid Films. 516: 2532-2536.
[6] Leaustic A., Dupont A., Yu P., Clement R., (2001), Photochromism of cationic spiropyran-doped silica gels. New J. Chem. 25: 1297-1301.
[7] Ueda M., Kudob K., Ichimura K., (1995), Photochromic behavior of a spirobenzopyran chemisorbed on a colloidal silica surface. J. Mater. Chem. 5: 1007-1011.  
[8] Piech M., Bell N. S., (2006), Controlled synthesis of photochromic polymer brushes by atom transfer radical polymerization. Macromolecules. 39: 915-922.   
[9] Samanta S., Locklin J., (2008), Formation of photochromic spiropyran polymer brushes via surface -initiated, ring-opening metathesis polymerization: Reversible photocontrol of wetting behavior and solvent dependent morphology changes. Langmuir. 24: 9558-9565.
[10] Nishi H., Kobatake S., (2010), Fabrication and photochromism of high-density diarylethene monolayer immobilized on a quartz-glass substrate. Chem. Lett. 39: 638-639.
[11] Piech M., George M. C, Bell N. S., Braun P. V., (2006), Patterned colloid assembly by grafted photochromic polymer layers. Langmuir. 22: 1379-1382.
[12] Okada H., Nakajima N., Tanaka T., Iwamoto M., (2005), Improvement in photocyclization efficiency of diaryl ethenes by adjusting the pore size of mesoporous silica. Angew. Chem. Int. Ed. 44: 7233-7236.
[13] Seno R., Kobatake S., (2015), Synthesis and characterization of amphiphilic silica nanoparticles covered by block copolymers branching photochromic diarylethene moieties on side chain. Dyes and Pigments. 114: 166-174.
[14] May F., Peter M., Hutten A., Prodi L., Mattay J., (2012), Synthesis and characterization of  photoswitchable fluorescent SiO2 nanoparticles. Chem. Eur. J. 18: 814-821.
[15] Ayazi-Yazdi S., Karimi L., Mirjalili M., Karimnejad M., (2016), Fabrication of photochromic, hydrophobic, antibacterial, and ultraviolet-blocking cotton fabric using silica nanoparticles functionalized with a photochromic dye. J. Text. Institute. 1-8.
[16] Cheng T., Lin T., Brady R., Wang X., (2008), Fast response photochromic textiles from hybrid silica surface coating. Fibers and Polymers.  9: 301-305.
[17] Cheng T., Lin T., Fang J., Brady R., (2007), Photochromic wool fabrics from a hybrid silica coating. Text. Res. J. 77: 923-928.
[18] Lin T., Cheng T., Brady R., Wang X., (2008), Photochromic wool fabrics with enhanced durability and photochromic performance. Adv. Sci. Technol. 60: 21-25.
[19] Parhizkar M., Zhao Y., Wang X., Lin T., (2014), Photostability and durability properties of photochromic organosilica coating on fabric. J. Engin. Fiber. Fabrics. 9: 65-73.
[20] Pinto T. V., Costa P., Sousa C. M., Sousa C. A. D., Pereira C., Silva C. J. S. M., Pereira M. F. R., Coelho P. J., Freire C., (2016), Screen-printed photochromic textiles through new inks based on SiO2 @naphthopyran nanoparticles. ACS Appl. Mater. Interf.8: 28935-28945.
[21] Pinto T. V., Costa P., Sousa. C. M., Sousa C. A. D., Pereira C., Silva C. J. S. M., Pereira M. F.R., Coelho P. J., Freire C., (2016), Naphthopyran-based silica nanoparticles as new high-performance photoresponsive materials. ACS Appl. Mater. Interf. 8: 7221-7231.
[22] Pinto T. V., Costa P., Sousa C. M., Sousa C. A. D., Pereira C., Silva C. J. S. M., Pereira M. F. R., Coelho P. J., Freire C., (2017), Novel generation of hybrid photochromic vinylidene-naphthofuran silica nanoparticles through fine-tuning of surface chemistry. Dalton Trans. 46: 9076-9088.
[23] Barachevsky V. A., Kobeleva O. I., Gorelik A. M., Krayushkin M. M., (2018), Spectral manifestations of the interaction of silicon dioxide nanoparticles with molecules of photochromic compounds. Opt. Spec. 125: 362-367.
[24] Photochromic Materials. Tian H. & Zhang J. (Ed.). Wiley-VCH Verlag GmbH & Co. Weinheim, Germany. 2016.
[25] Fedorova O. A., Gromov S. P., Strokach Yu. P., Pershina Yu. V., Sergeev S. A., Barachevsky V. A., Pepe G., Samat A., Guglielmetti R., Alfimov M. V., (1999), Crown-containing spirooxazines and spiropyrans 1. Synthesis and the anion-"capped" complexes of photochromic aza-15-crown-5 ethers with flexible spacers. Russ. Chem. Bull. 48: 1950-1959.
 [26] Nedoshivin V. Yu., Zaichenko N. L., Glagolev N. N., Marevtsev V. S., (1996), Synthesis of polymerizable photochromic spironaphthoxazines.Russ. Chem. Bull. 45: 1182-1184.
 [27] Sakata T., Yan Y., Marriott G., (2005), Family of site-selective molecular optical switches. J. Org. Chem. 70: 2009-2013.
 [28] Khuzin A. A., Tuktarov A. R., Barachevsky V. A., Valova T. M., Tulyabaev A. R., Dzhemilev U. M., (2020), Synthesis, photo and acidochromic properties of spiropyran-containing methanofullerenes. RSC Adv.  10: 15888-15892. 
[29] Kol ́tsova L. S., Zaichenko N. L., Shiyonok A. I., Marevtsev V. S., (2001), Merocyanine form of photochromic spirooxazines in acid solutions. Rus. Chem. Bull. 50: 1214-1217.
[30] Sun X. D., Fan M. G., Meng X. J., Knobbe E. T., (1997), Acidichromic effects in spiro ( 1, 3, 3-trimethylindolo-2,3'-naphth [1,2-b]-1,4-oxazine), a photochromic compound. I. Absorption characteristics. J. Photochem. Photobiol. A. 102: 213-216.
[31] Lee I.-J., Kang T.-W., Kim T.-E., (2008), Effects of proton beam irradiation on spirophenanthrooxazine dissolved in chloroform. Chem. Lett. 37: 1154-1155.
 [32] Genovese M. E., Athanassiou  A., Fragouli D., (2015), Photoactivated acidochromic elastomeric films for on demand acidic vapor sensing. J. Mater. Chem. A. 3: 22441–22447.
[33] Zhao Z., Tian J., (2017), Ultraviolet–visible/fluorescence behaviors of a spiropyran/polydimethyl-siloxane composite film under acid vapors. J. Appl. Polym. Sci. 134: 45199-45208.
[34] Tuktarov A. R., Khuzin A. A., Dzhemilev U. M., (2019), Acid-base isomerization of hybrid molecules based on fullerene C60 and spiropyrans. Mendeleev Commun. 29: 229-231.
[35] Gaeva E. B., Pimenta V., Metelitsa A. V., Voloshin N. A., Minkin V. I., Micheau J. C., (2005), Solvatation effect on spirooxazine to merocyanine thermal reversion kinetics in acetonitrile-water binary mixtures. J. Phys. Org. Chem. 18: 315-320.