Investigation on the effect of micro and nano fillers on electrical and thermal conductivity of glass epoxy hybrid composites

Document Type : Reasearch Paper


1 Department of Electronics and Communication Engineering, N.M.A.M. Institute of Technology (Affiliated to the Visvesvaraya Technological University, Belagavi) Nitte, 574110 Udupi, Karnataka, India.

2 Department of Electronics and Communication Engineering, JSS Science and Technology University, 570006 Mysuru, Karnataka, India.

3 Department of Electrical and Electronics Engineering, Siddaganga Institute of Technology, 572103 Tumakuru, Karnataka, India.


The electrical and thermal properties of polymer composites are enhanced by the incorporation of nano and micron fillers. Reported work on polymer composites with the combination of micro and nano sized fillers like silicon dioxide, alumina, silicon carbide, molybdenum disulphide, and graphite are limited. In this investigation, the AC conductivity of composites with the combination of micro and nano fillers were determined over a frequency range of 20 Hz to 10 MHz, at temperatures of 25, 50 and 75±2⁰ C. The thermal conductivity of composites was also determined to investigate the synergistic effects of the hybrid fillers. The AC conductivity of the composites shows minimal dependence in the low-frequency range, and it increases at higher frequencies. Composites with hybrid fillers exhibit relatively higher AC conductivity of 10-3 S/m at 75° C. The thermal conductivity of 0.68 W/m k which is achieved with molybdenum disulphide filler, is twice the value of the base epoxy. The composites with the combination of micro and nano sized fillers also reveal good enhancement of glass transition temperature to 145° C and exhibit better electrical and thermal properties than the composites with individual micron or nano fillers.


[1] Liang Mu., Wong K. L., (2017), Improving the long-term performance of composite insulators use nanocomposite: A review. Energy Procedia. 110: 168-173.
[2] Glushkov D. A., (2014), Polymeric insulation: Advantages and disadvantages. Adv. Mater. Res. 1008: 615-619.
[3] Al Mahmood A., Mobin A., Morshed R., Zaman T., (2017), Characterization of glass fibre reinforced polymer composite prepared by hand layup method. Am. J. Biosci. Bioeng. 5: 8-11.
[4] Sathish Kumar T. P., Satheesh Kumar S., Naveen J., (2014), Glass fiber-reinforced polymer composites: A Review. J. Reinf. Plast. Compos. 33: 1258-1275.
[5] Manju M. B., Vignesh S., Nikhil K. S., Sharaj A. P., Murthy M., (2018), Electrical conductivity studies of glass fiber reinforced polymer composites. Int. Conf. Adv. Mater. Appl. 5: 3229-3236.
[6] Kumar Eesarapu V., Pagidipalli S., Suresh V., Ramesh Kumar G. V., (2016), Study and testing of glass fibre reinforced plastics. Int. J. Recent Trends Eng. Res. 2: 115-123.
[7] Suresha B., Chandramohan G., Renukappa N. M., Siddaramaiah A., (2009), Influence of silicon carbide filler on mechanical and dielectric properties of glass fabric reinforced epoxy composites. J. Appl. Polym. Sci. 111: 685-691.
[8] Kadhim M. J., Abdullah A. K., Al-Ajaj I. A., Khalil A. S., (2014), Dielectric properties of Epoxy/Al2O3 nanocomposites. Int. J. Appl. Innov. Eng. Manage. 3: 468-477.
[9] Gupta M. K., (2018), Investigations on properties of glass fibre reinforced polymer composite. Am. J. Polym. Sci. Eng. 6: 31-44.
[10] Srinivas K., Bhagyashekar M. S., Darshan B. G., (2018), Effect of fllers on electrical conductivity of epoxy composites. J. Polym. Comp. 6: 25-30.
[11] Kareem A. A., Hassan J. M., Abdullah H. W., (2015), Effect of SiC particles on dielectric properties of epoxy reinforcement by (Bi-Directional) glass fiber. J. Mater. Sci. Eng. 4: 1-3.
[12] Waleed A. H., Abdullah A. H., Khalaf J. M., Al-Mowali A. H., Sultan A. A., (2015), Dielectric properties and a.c. conductivity of Epoxy/Alumina silicate NGK composites. Adv. Chem. Eng. Sci. 5: 282-289.
[13] Veena M. G., Renukappa N. M., Shivakumar K. N., Seetharamu S., (2016), Dielectric properties of nanosilica filled epoxy nanocomposites. Ind. Acad. Sci. 41: 407-414.
[14] Chen Y., Li Zh., Liu Y., Teng C., Cui W., (2019), Effect of Al2O3 on microstructure and dielectric properties of Epoxy‑cyanate ester composite material. J. Mater. Sci: Mater. Electron. 30: 20614-20623.
[15] Devendra K., Rangaswamy T., (2012), Evaluation of thermal properties of E-Glass/Epoxy composites filled by different filler materials. Int. J. Comput. Eng. Res. 2: 1708-1714.
[16] Khoramishad H., Mousavi M. V., (2019), Hybrid polymer composite materials. Int. Conf. Appl. Sci. Technol. 2144: 030030-1 - 030030-7.
[17] Suchitra M., Renukappa N. M., Ranganathaiah C., Sundara Rajan J., (2018), Correlation of Free space length and surface energy of Epoxy nanocomposites to surface tracking. IEEE Trans. Dielectr. Elect. Insul. 25: 2129-2138.
[18] Hoang Luan V., Tien H. N., Cuong T. V., Kong B. S., Chung J. S., Kim E. J., Hur S. H., (2012), Novel conductive epoxy composites composed of 2-D chemically reduced graphene and 1-D silver nanowire hybrid fillers. J. Mater. Chem. 22: 8649-8653.
[19] Zhang R., Bin Y., Chen R., Matsuo M., (2013), Evaluation by tunnelling effect for the temperature-dependent electric conductivity of polymer-carbon fiber composites with visco-elastic properties. Polym. J. 45: 1120-1134.
[20] Jonscher A. K., (1999), Dielectric relaxation in solids. J. Phys. 32: 57-70.
[21] Elimat Z. M., Hamideen M. S., Schulte K. I., Wittich H., de la Vega A., Wichmann M., Buschhorn S., (2010), Dielectric properties of epoxy/short carbon fiber composites. J. Mater. Sci. 45: 5196-5203.
[22] Das A. S., Biswas D., (2019), Investigation of AC conductivity mechanism and dielectric relaxation of semiconducting neodymium-vanadate nanocomposites: Temperature and frequency dependency. Mater. Res. Express. 6: 1-15.
[23] Parmar A. K., Patel R., (2018), Dielectric properties of Alumina based Epoxy composites for electrical insulation. IEEE Int. Conf. Electron. Mater. Eng. Nanotechnol. 1-4.
[24] Manani N. H., Jethva H. O., Joshi M. J., (2020), Dielectric relaxation, conductivity mechanism and complex impedance spectroscopic studies of pure and cadmium mixed cobalt Levo-tartrate crystals. Int. J. Scientific Res. Phys. Appl. Sci. 8: 8-15.
[25] Samanta B., Kumar P., Nanda D., Sahu R., (2019), Dielectric properties of Epoxy-Al composites for embedded capacitor applications. Results in Phys. 14: 1-9.
[26] Singha S., Thomas M. J., (2008), Dielectric properties of Epoxy nanocomposites. IEEE Trans. Dielectric. Elect. Insul. 15: 12-23.
[27] Lau K. Y., Vaughan A. S., Chen G., Hosier I. L., Holt A. F., Ching K. Y., (2014), On the space charge and DC breakdown behaviour of polyethylene/silica nanocomposites. IEEE Trans. Dielectr. Elect. Insul. 21: 340-341.
[28] Suchitra M., Renukappa N. M., (2016), The thermal properties of glass fiber reinforced Epoxy composites with and without fillers. Macromolecular Symp. 361: 117-122.
[29] Venkataramanaiah P., Aradhya R., Sundara Rajan J., (2021), Investigations on the effect of hybrid carbon fillers on the thermal conductivity of glass epoxy composites. Polym. Comp. 42: 618-633.
[30] Wang J., Carson J. K., North M. F., Cleland D. J., (2008), A new structural model of effective thermal conductivity for heterogeneous materials with co-continuous phases. Int. J. Heat and Mass Transfer. 51: 2389-2397.
[31] Kochetov R., Korobko A. V., Andritsch T., Morshuis P. H. F., Picken S. J., Smit J. J., (2011), Modelling of the thermal conductivity in polymer nanocomposites and the impact of the interface between filler and matrix. J. Phy. D: Appl. Phy. 44: 1-12.
[32] Pietrak K., Wisniewski T. S., (2015), A review of models for effective thermal conductivity of composite materials. J. Power Technol. 95: 14-24.
[33] Hamdan Z. K., Farhan Ogaili A. A., Metteb Z. W., Abdulla F. A., (2021), Study the electrical, thermal behaviour of (glass/jute) fibre hybrid composite material. J. Phy. 1783: 1-6.
[34] Yao W., Cao B., (2014), Thermal wave propagation in graphene studied by molecular dynamics simulations. Chin. Sci. Bull. 59: 3495-3503.
[35] Li A., Zhang C., Zhang Y. F., (2017), Thermal conductivity of graphene-polymer composites: Mechanisms, properties, and applications. Polym. 9: 1-17.