Synthesis and characterization of Cobalt Oxide nanoparticles using Momordica charantia and its photocatalytic activity

Document Type : Reasearch Paper


1 PG & Research Department of Chemistry, V. O. Chidambaram College, Tuticorin, India.

2 PG & Research Department of Botany, V. O. Chidambaram College, Tuticorin, India.

3 PG & Research Department of Zoology, V. O. Chidambaram College, Tuticorin, India.

4 Department of Microbiology, St. Mary’s College (Autonomous), Tuticorin, India.

5 Department of Biotechnology, Malankara Catholic College, Mariagiri Tamilnadu, India.


Synthesizing plant-derived nanoparticles attract attention due to both their broad-spectrum biological applications and sustainable production. This paper describes the production of Cobalt oxide nanoparticles (Co3O4 NPs) using M. charantia leaf extract. The Uv–Vis absorption spectrum of them has peaks at 309 and 595nm. FTIR spectroscopy reveals bands at 580cm-1 and 667cm-1 and confirms the formation of Co3O4. The particle size was determined by XRD to be between 44.68 and 89.20nm. The Field Emission Scanning Electron Microscopy (FESEM) showed that Co3O4 NPs were irregular in shape and between 40 and 90nm in size. Further, the dye degrading capacity of this nanoparticle was ascertained. The dye degrading capacity of Co3O4 NPs exhibited was 81.50% obtained at 90 minutes of light irradiation.


  1. 1. Nabi Bidhendi G., Mehrdadi N., Firouzbakhsh M., (2021), Removal of lead from wastewater by iron–benzenetricarboxylate metal-organic frameworks. Methodol. 5: 271-284.
  2. Hatami A., Heydarinasab A., Akbarzadehkhiyavi A., Pajoum Shariati F., (2021), An introduction to nanotechnology and drug delivery. Chem. Methodol. 5: 153-165.
  3. Jabbari R., Ghasemi N., (2021), Investigating methylene blue dye adsorption isotherms using silver nano particles provided by aqueous extract of tragopogon buphthalmoidesChem. Methodol. 5: 21-29.
  4. Behmaneshfar A., Sadrnia A., Karimi-Maleha H., (2020), Application of box–behnken experimental design for optimizing the performance of reduced graphene/Fe3O4 nano adsorbent for removal of raloxifene anticancer drug. Chem. Methodol. 4: 679-694.
  5. Iravani S., Korbekandi H., Mirmohammadi S. V., Zolfaghari B., (2014), Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharmaceut. Sci. 9: 385-406.
  6. Pal G., Rai P., Pandey A., (2019), Green synthesis of nanoparticles: A greener approach for a cleaner future. Green Syn. Charac. Appl. Nanopart. Elsevier, 1-26.
  7. Mahmood S., Atiya A., Abdulrazzak F., Alkaim A., Hussein F., (2021), A review on applications of carbon nanotubes (CNTs) in solar cells. J. Medic. Chem. Sci. 4: 225-229.
  8. Fazal-ur-Rehman M., Qayyum I., (2020), Biomedical scope of gold nanoparticles in medical sciences; an advancement in cancer therapy. J. Med. Chem. Sci. 3: 399-407.
  9. Mostaghni F., Taat F., (2020), CoFe2O4 as green and efficient catalyst for synthesis of multisubstituted imidazoles. Euras. Chem. Comm. 2: 427-432.
  10. Kreydie S., Al-Abdaly B., (2021), Synthesis, characterization and evaluation of inhibition corrosion of bacterial cellulose/metal oxides nanocomposites. Euras. Chem. Comm. 3: 706-714.
  11. 11. Selvakani P., Mariappan R., (2021), Chapter One - Biosynthesis of nanoparticles and their roles in numerous areas. Compreh. Anal. Chem. 94: 1- 47.
  12. Kawasaki M., Nishimura N.,  (2006), 1064-nm laser fragmentation of thin Au and Ag flakes in acetone for highly productive pathway to stable metal nanoparticles. Appl. Surf. Sci.253: 2208-2216.
  13. Tarasenko N. V., Butsen A. V., Nevar E. A., Savastenko N. A., (2006), Synthesis of nanosized particles during laser ablation of gold in water. Appl. Surf. Sci. 252: 4439-4444.
  14. Amininia A., Pourshamsian K., Sadeghi B., (2019), Introducing an effective nanocatlytic for the one-pot synthesis and investigation of biological properties of pyranopyrimidinone and xanthenes derivatives. J. Chil. Chem. Soc. 64: 4633–4638.
  15. Sivachidambaram M., Vijaya J. J., Kaviyarasu K., Kennedy L. J., Al-Lohedan H. A., Ramalingam R. J., (2017), A novel synthesis protocol for Co3O4 nanocatalysts and their catalytic applications. RSC Adv. 7: 38861-38870.
  16. Hu L., Peng Q., Li Y. J., (2008), Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion.  Am. Chem. Soc. 130: 16136-16137.
  17. Wang Y., Wang W., Song W., (2011),  Binary CuO/Co3O4 nanofibers for ultrafast and amplified electrochemical sensing of fructose.  Electrochim. Acta.56: 10191-10196.
  18. Jana T. K., Pal A., Chatterjee K. J., (2015), Magnetic and photocatalytic study of Co3O4–ZnO nanocomposite. Alloys & Comp. 653: 338-344.
  19. Dhas C. R., Venkatesh R., Jothivenkatachalam K., Nithya A., Benjamin B. S., Raj A. M. E., Jeyadheepan K., Sanjeeviraja C., (2015), Visible light driven photocatalytic degradation of Rhodamine B and direct Red using cobalt oxide nanoparticles. Ceram. Int. 41: 9301-9313.
  20. Robinson T., McMullan G., Marchant R., Nigam P., (2001), Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technol. 77: 247-255.
  21. David S. A., Vedhi C., (2017), Synthesis of nano Co3O4-MnO2-ZrO2 mixed oxides for visible-light photocatalytic activity. Int. J. Adv. Res. Sci. Eng. 6: 613-623.
  22. Upadhyay A., Agrahari P., Singh D. K., (2015), A review on salient pharmacological features of Momordica charantiaInt. J. Pharmacol. 11: 405-413.
  23. Grover J. K., Yadav S. P., (2004), Pharmacological actions and potential uses of Momordica charantia: A review. J. Ethnopharmacol. 93: 123-132.
  24. Budrat P., Shotipruk A., (2008), Extraction of phenolic compounds from fruits of bitter melon (Momordica charantia) with subcritical water extraction and antioxidant activities of these extracts. Chiang Mai. J. Sci. 35: 123-130.
  25. Beloin N., Gbeassor M., Akpagana K., Hudson J., de Soussa K., Koumaglo K., Arnason J. T., (2005), Ethnomedicinal uses of Momordica charantia (Cucurbitaceae) in Togo and relation to its phytochemistry and biological activity. J. Ethnopharmacol. 96: 49-55.
  26. Sharma J. K., Srivastava P., Singh G., Akhtar M. S., Ameen S. J. M. S., (2015), Green synthesis of Co3O4 nanoparticles and their applications in the thermal decomposition of ammonium perchlorate and dye-sensitized solar cells.  Mat. Sci. Eng. B. 193: 181-188.
  27. Yedurkar S., Maurya C., Mahanwar P., (2016), Biosynthesis of zinc oxide nanoparticles using Ixora coccinea leaf extract: A green approach. Open J. Syn. Theory and Appl.5: 1-14.
  28. Rasheed T., Nabeel F., Bilal M., Iqbal H. M., (2019), Biogenic synthesis and characterization of cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and methyl orange dyes. Biocatal. Agricult. Biotechnol. 19: 1-14.
  29. Das R. K., Golder A. K., (2017), Co3O4 spinel nanoparticles decorated graphite electrode: Bio-mediated synthesis and electrochemical H2O2 sensing.  Electrochim. Acta.251: 415-426.
  30. Ikhuoria E. U., Omorogbe S. O., Sone B. T., Maaza M., (2018), Bioinspired shape controlled antiferromagnetic Co3O4 with prism like-anchored octahedron morphology: A facile green synthesis using Manihot esculenta Crantz extract. Sci. Technol. Mat. 30: 92-98.
  31. Aragaw S. G., Sabir F. K., Andoshe D. M., Zelekew O. A., (2020), Green synthesis of p-Co3O4/n-ZnO composite catalyst with Eichhornia crassipes plant extract mediated for methylene blue degradation under visible light irradiation. Mat. Res. Exp. 7: 095508.
  32. Warang T., Patel N., Fernandes R., Bazzanella N., Miotello A., (2013), Co3O4 nanoparticles assembled coatings synthesized by different techniques for photo-degradation of methylene blue dye.  Appl. Catal. B: Environ. 132: 204-211.
  33. Saeed M., Akram N., Naqvi S. A. R., Usman M., Abbas M. A., Adeel M., Nisar A., (2019), Green and eco-friendly synthesis of Co3O4 and Ag- Co3O4: Characterization and photo-catalytic activity.  Green Process. Synth.8: 382-390.
  34. Bibi I., Nazar N., Iqbal M., Kamal S., Nawaz H., Nouren S., Safa Y., Jilani K., Sultan M., Ata S., Rehman F., (2017), Green and eco-friendly synthesis of cobalt-oxide nanoparticle: Characterization and photo-catalytic activity. Adv. Powder Technol. 28: 2035-2043.