Thermoelectric properties of zigzag single-walled Carbon nanotubes and zigzag single-walled Boron Nitride nanotubes (9, 0)

Document Type : Reasearch Paper

Authors

Department of Physics, Ayatollah Amoli Branch, Islamic Azad University, Amol 46351-43358, Iran.

Abstract

In this paper, the thermoelectric properties of zigzag single-walled carbon nanotubes (SWCNT) and zigzag single-walled boron nitride nanotubes (SWBNNT) are investigated. For this purpose, the chirality is considered as (9, 0). The characteristics are computed at three arbitrary temperatures of 200K, 300K, and 500K. Results show the Seebeck coefficient of zigzag SWCNT increases by increasing the temperature, while decreases for the zigzag SWBNNT. The peak of the Seebeck coefficient of the zigzag SWCNT at the temperatures of 200K, 300K, and 500K are , , and , respectively. The associated values of SWBNNT are, , and , respectively.Besides, it is observed that at the temperature of 200K, the Seebeck coefficient zigzag SWBNNT is about 88 times the value of zigzag SWCNT. Moreover, due to the Seebeck coefficient sign type in the Fermi energy range, both of the considered nanostructures are semiconductors and n-type. It is depicted that the electrical conductivity and total thermal conductance of SWCNT are larger than SWBNNT. Efficiency is an important parameter to characterize the thermoelectric properties of nanomaterials. Results show the figure-of-merit (ZT) value of SWBNNT is much better than that of SWCNT. Due to the contribution of phonons, the zigzag SWBNNT has larger Seebeck coefficient. The studies show that the maximum value of ZT of the zigzag SWBNNT at the temperatures of 200K, 300K and, 500K are larger than 0.0207, 0.0342 and, 0.0718, respectively. The results of this study can be useful in the design of nanoelectronic, and cooling systems.

Keywords


[1] Maslyuk V. V., Achilles S., Sandratskii L., Brandbyge M., Mertig I., (2013), Thermopower switching by magnetic field: First-principles calculations. Phys. Rev. B: 88: 081403.
[2] Koumoto K., Mori T., (2013), Thermoelectric nonmaterial's design and applications springier series in materials science. Springer, New York.
[3] Iijima S., Ichihashi A., (1993), Single-shell carbon nanotubes of 1-nm diameter. Nature. 363: 603–605.
[4] Dincer I., Rosen M. A., (1998), A worldwide perspective on energy, environment and sustainable development. Int. J. Energy Res. 22: 1305-1321.
[5] Yoshioka S., Hayashi K., Yokoyama A., Saito W., Li H., Takamatsu T., Miyazaki Y., (2020), Crystal structure, electronic structure and thermoelectric properties of β-and γ-Zn 4 Sb3 thermoelectrics: A (3+ 1)-dimensional superspace group approach. J. Mater. Chem. C. 8: 9205–9212.                                                                                               
[6] Sheskin A., Schwarz T. , Yu Y., Zhang S., Abdellaoui L., Gault B., Cojocaru-Miredin O., Scheu C., Raabe D., Wuttig M., Amouyal Y., (2018), Tailoring thermoelectric transport properties of Ag-alloyed PbTe: Effects of microstructure evolution. ACS Appl. Mater. Interf. 10: 38994-39001 .
[7] Khan I., Saeed K., Khan I., (2019), Nanoparticles: Properties, applications and toxicities. Arab. J. Chem.12: 908-931.
[8] He H., Ai Pham-Huy L., Dramou P. , Xiao D., Zuo P., Pham-Huy C., ( 2013), Carbon nanotubes: Applications in pharmacy and medicine. Bio. Med. Res. Int. 12: 578290.
[9] Wakabayashi K., Dutta S., (2012), Nanoscale and edge effect on electronic properties of graphene. Sci. Rep. 2: 519-526.
[10] Zuev Y. M., Chang W., Kim P., (2009), Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102: 096807.
[11] Chang C. P., Lu C. L., Shyu F. L., Chen R. B., Huang Y. C., Lin M. F., (2005), Magnetoelectronic properties of nanographite ribbons. Phys. E Low-Dimens. Syst. Nanostruc. 27: 82–97.
[12] Wang J., Ma F., Sun M., (2017), Graphene, hexagonal boron nitride, and their
heterostructures: properties and applications. RSC Adv. 7: 16801-16806.
[13] Abergel D. S. L., Apalkov V., Berashevich J., Ziegler K., Chakraborty T., (2010), Properties of graphene: A theoretical perspective. Adv. Phys. 59: 461-482.
[14] Kane C. L., Mele E., (2005), Quantum spin hall effect in graphene. J. Phys. Rev. Lett. 95: 146802-146807.
[15] Walczak K., (2007), Thermoelectric properties of vibrating molecule asymmetrically connected to the electrodes. Phys. B. Condens. Matter. 392: 173-179.
[16] Zhou L., Carbotte J. P., (2013), Impact of electron–phonon interaction on dynamic conductivity of gapped dirac fermions: Application to single layer MoS2. Phys. B: Condens. Matter. 421: 97-104.
[17] Sharma V., Kagdada H. L., Jha  P. K., Spiewak P., Kurzyd┼éowski K. J., (2020), Thermal transport properties of boron nitride based materials: A review. Renew. Sustain. Energy Rev.120: 109622.
[18] Huang L., Zhang Q., Yuan B., Lai X., Yan X., Ren Z., (2016), Recent progress in half-Heusler thermoelectric materials. Mater. Res. Bullet. 76: 107-112.
[19] Chen L., Zeng X., Tritt T. M., Poon S. J., (2016), Half-heusler alloys for efficient thermoelectric power conversion. J. Electron Mater. 45: 5554–60.
[20] Venkatasubramanian R., Siivola E., Colpitts T., Quinn B., (2001), Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 413: 597–602.
[21] Zevalkink A., Zeier W. G., Pomrehn G., Schechtel E., Tremel W., Snyder G. J., ( 2012), Thermoelectric properties of Sr3 GaSb3–a chain-forming Zintl compound. Energy Env.  Sci. 5: 9121-9127.
[22] Kuang W., Hu R., Fan Z. Q., Zhang Z. H., (2019), Spin-dependent carrier mobility and its gate-voltage modifying effects for functionalized single walled black phosphorus tubes. Nanotechnol. 30: 145301.
[23] Jiang X., Ban C., Li L., Wang C., Chen W., Liu X., (2021), Thermoelectric properties study on the BN nanoribbons via BoltzTrap first-principles. AIP Adv. 11: 055120.
[24] Nasrollahzadeh M., Sajjadi M., Atarod M., Sajjadi S. M., Issaabadi Z., (2019), Types of nanostructures. Interf. Sci. Technol. 28: 29-80.
[25] Huang Z., Lu T. Y., Wang H. Q., Yang S. W., Zheng J. C., ( 2017), Thermoelectric properties of two-dimensional hexagonal indium-VA. Comput. Mater. Sci. 130: 232-237.
[26] Kresse G., Furthmuller J., (1996), Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54: 11169-11175.
[27] Heine T., Seifert G., Fowler P. W., Zerbetto F., (1999), A tight-binding treatment for 13C NMR spectra of fullerenes. J. Phys. Chem. A. 103: 8738-8743.
[28] Porezag D., Frauenheim T. H., Köhler T. H., Seifert G., Kaschner R., (1995), Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. Phys. Rev. B. 51: 12947-12953.
[29] Carlo A. D., (2002), Tight-binding methods for transport and optical properties in realistic nanostructures. Phys. B: Condens. Mat. 314: 211-219.
[30] Deb J.,  Mondal R., Sarkar U., Sadeghi H., (2021), Electronic and transport property of two-dimensional boron phosphide sheet. J. Molec. Graph. Model. 112: 108117-108122.
[31] Ding G., Gao G., Yao K., (2015), High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds. Sci. Rep. 5: 9567-9572.
[32] Ma H., Yang C.-L., Wang M.-S., Ma X.-G., (2018), AgKTe: An intrinsic semiconductor material with high thermoelectric properties at room temperature. J. Alloys Compd. 739: 35–40.
[33] Niazian M. R., Yaghobi M., (2016), Inelastic electron transport in C70 fullerene. Indian J. Pure & Appl. Phys. 54: 123-129.
[34] Avouris P., JiaChen J., (2006), Nanotube electronics and optoelectronics. Mater. Today. 9: 46-54.
[35] Haque E., Cazorla C., Hossain M. A., (2019), First-principles prediction of large thermoelectric efficiency in superionic Li2 SnX3 (X= S, Se). Phys. Chem. Chem. Phys. 22: 878-883.
[36] Yaghobi M., Ramzanpour M. A., Niazian M. R., (2016), Electronic transport through N24B24 molecular junction. Chin. J. Chem. Phys. 29: 223-228.
[37] Boor J. de., Mülle E., (2013), Data analysis for Seebeck coefficient measurements. Rev. Sci. Inst. 84: 065102-065107.
[38] Snyder G. J., Snyder A. H., (2017), Figure of merit ZT of a thermoelectric device defined from materials properties. Energy Environ. Sci. 10: 2280–2283.
[39] Herrera-Carbajal A., Rodríguez-Lugo V., Hernández-Ávila J., Sánchez-Castillo A., (2021), A theoretical study on the electronic, structural and optical properties of armchair, zigzag and chiral silicon–germanium nanotubes Phys. Chem. Chem. Phys. 23: 13075-13086.
[40] Niazian M. R., Matin L. F., Yaghobi M., Masoudi A. A., (2020), Thermoelectric Properties of B12 N12 Molecule. Current Nanosc. 16: 936–944.
[41] Pan C., Long M., He J., (2017), Enhanced thermoelectric properties in boron nitride quantum-dot. Results in Phys. 7: 1487–1491.
[42] Visan C., (2014), Thermoelectric properties of graphene-boron-nitride nanoribbons with transition metal impurities. J. Elect. Mater. 43: 3470–3476.