Low-power min/max architecture in 32nm CNTFET technology for fuzzy applications based on a novel comparator

Document Type : Reasearch Paper


Microelectronics Research Laboratory of Urmia University, Urmia, Iran.


In this paper, the design of a novel low-power Min/Max circuit using Carbon Nanotube Field-Effect Transistor (CNTFET) technology has been discussed. By employing a new structure for the implementation of digital comparator, a high performance configuration has been obtained which consumes small area on chip due to the low transistor count used for its implementation. Because the comparator is capable of comparing 4-bit words, the designed circuitry can also be expanded to operate as a Winner-Takes-All (WTA) or Loser-Takes-All (LTA) system. The circuit is first simulated in a Complementary Metal-Oxide-Semiconductor (CMOS) process to demonstrate its correct performance and then, the simulations have been performed for the CNTFET technology to indicate that the design procedure is independent of the employed technology. In order to show the advantages of the proposed circuitry in a better manner, the state-of-the-art similar works have been redesignated and simulated along with our work. Based on the simulation results for CNTFET 32nm standard process, the proposed comparator consumes 8.3µW from 0.9V power supply, while its total transistor count is 66.


1. Talaska T., (2017), Implementation of fuzzy logic operators as digital asynchronous circuits in CMOS technology. Proc. 30 th Conf. Microelectron.
2. Wilamowski B. M., (1998), Analog VLSI hardware for fuzzy systems, Proceedings of the 24 th Annual Conference of the IEEE Industrial Electronics Society, IECON '98.
3. Azizian S., Aziz Aghchegala V., Azizian S., Sefidgar Dilmaghani M., (2019), CMOS bulk-controlled fully programmable neuron for artificial neural networks. IETE J. Res. 65: 320-328.
4. Azizian S., Fathi K., Mashoufi B., Derogarian F., (2011), Implementation of a programmable neuron in 0.35 μm CMOS process for multi-layer ANN applications. Eurocon-Int. Conf. Comp. Tool. 1-4.
5. Zavala A. H., Nieto O. C., (2012), Fuzzy hardware: A retrospective and analysis. IEEE Transact. Fuzzy Sys. 20: 623-635.
6. Yaghmourali Y. V., Fathi A., Hassanzadazar M., Khoei A., Hadidi K., (2018), A low-power, fully programmable membership function generator using both transconductance and current modes. Fuzzy Sets and Systems. 337: 128-142.
7. Gabrielli A., Gandolfi E., Masetti M., Maloberti f., (1995), Design and preliminary results of high speed analog 1.0/spl mu/m CMOS MIN-MAX circuit for fuzzy architectures. Proceedings of the 38th Midwest Symposium on Circuits and Systems.
8. Aksin D. Y., (2002), A high-precision high-resolution WTA–MAX circuit of O (N) complexity. IEEE Transact. Circ. Systems—II: Analog. Digital Signal Process. 49: 48-53.
9. Madrenas J., Fernández d., Cosp J., (2010), A low-voltage current sorting circuit based on 4-T min-max CMOS switch. 17 th IEEE Int. Conf. Electron. Circuits, and Systems (ICECS).
10. Shayanfar R., Khoei A., Hadidi K., (2010), Multi-input voltage-mode min-max circuit. 18 th Iran. Conf. Elect. Eng. (ICEE).
11. Padash M., Khoei A., Hadidi K., Ghasemiyan H., (2011), A high precision high frequency VLSI multi-input min-max circuit based on WTA-LTA cells. Int. Conf. Elect. Dev. Sys. Applicat. (ICEDSA).
12. Moaiyeri M. M., Chavoshisani R., Jalali A., Navi K., Hashemipour O., (2012), High-performance mixed-mode universal min-max circuits for nanotechnology. Syst. Signal Proc. 31: 465–488.
13. Fathi A., Khoei A., Hadidi K., (2015), High speed min/max architecture based on a novel comparator in 0.18-μm CMOS process. Circuit. Syst. Comput. 24: 1550048.
14. Mane S. C., Hajare S. P., Dakhole P., (2017), Current mode quaternary logic circuit. Conf. Communic. Signal Processing.
15. Amirkhanzadeh R., Khoei A., Hadidi K., (2005), A mixed-signal current-mode fuzzy logic controller. AEU-Int. J. Electron. Commun. 59: 177–184.
16. Liu C., Cheng H., (2013), Carbon nanotubes: Controlled growth and application. Materials Today. 16: 19-28.
17. Avouris P., Afzali A., Appenzeller J., Chen J., Freitag M., Klinke C., Lin Y.-M., Tsang J. C., (2004), Carbon nanotube electronics and optoelectronics. Digest-IEEE Int. Elect. Dev. Meet. (IEDM). 525-529.
18. Franklin A. D., (2013), Electronics: The road to carbon nanotube transistors. 498: 443–444.
19. Rahnamaei A., Zare Fatin G., Eskandarian A., (2019), Design of a low power high speed 4-2 compressor using CNTFET 32 nm technology for parallel multipliers. Int. J. Nano Dimens. 10: 114-124.
20. Rahnamaei A., Zare Fatin G., Eskandarian A., (2019), High speed radix-4 booth scheme in CNTFET technology for high performance parallel multipliers. J. Nano Dimens. 10: 281-290.
21. Seyed Aalinejad S. M., (2019), Implementation of a programmable neuron in CNTFET technology for low-power neural networks. J. Nano Dimens. 11: 120-129.
22. Yousefi R., Saghafi K., Moravvej-Farshi M. K., (2010), Application of neural space mapping for modeling ballistic carbon nanotube transistors. J. Electric. Electron. Eng. 6: 70-76.
23. Abdollahzadeh Badelbo R., Farokhi F., Kashaniniya A., (2013), Efficient parameters selection for CNTFET modelling using artificial neural networks. J. Smart Elect. Eng. 2: 217-222.
24. Zhang J., Chang Sh., Wang H., He J., Huang O., (2014), Artificial neural network based CNTFETs modeling. Mechanic. Mater. 667: 390-395.
25. Friesz A. K., Parker A. C., Zhou Ch., Philip Wong H.-S., Deng J., (2007), A biomimetic carbon nanotube synapse circuit, biomedical engineering society (BMES), Annual Fall Meeting.
26. Joshi J., Zhang J., Wang Ch., Hsu Ch.-Ch., Parker A. C., Zhou Ch., Ravishankar U., (2011), A biomimetic fabricated carbon nanotube synapse for prosthetic applications. IEEE/NIH Life Science Systems and Applications Workshop (LiSSA).
27. Najari M., El-Grour T., Jelliti S., Mousa Hakami O., (2016), Simulation of a spiking neuron circuit using carbon nanotube transistors. Proceedings of The Fifth Saudi International Meeting on Frontiers of Physics (SIMFP2016).
28. Moaiyeri M. H., Chavoshisani R., Jalali A., (2012), High-performance mixed-mode universal min-max circuits for nanotechnology. Syst. Signal Proc. 31: 465–488.
29. Zaki F., Mustajab P., (2019), Voltage mode CNFET based fuzzy min-max circuits. Conf. Elect. Electron. Comput. Eng. (UPCON).
30. Pendashteh Y., Hosseini S. A., (2021), Novel low-complexity and energy-efficient fuzzy min and max circuits in nanoelectronics. AEU- Int. J. Elect. Communic. 138: 153858.
31. Ali B., Rahman M., Rahman H. R., (2012), Design and optimization of nanometric reversible 4 bit numerical comparator. IEEE/OSAIIAPR Int. Conf. Inform. Elect. & Vision.
32. Dibal P. Y., (2013), Design of A 4-bit magnitude comparator using simulink, arid zone. Eng. Technol. Envir. 9: 9-16.
33. Prajapat G., Joshi A., Jain A., Verma K., Jaiswal S. K., (2013), Design of low power and high speed 4-bit comparator using transmission gate. Conf. Machine Intellig. Res. Adv.
34. Sharma A., Sharma P., (2014), Area and power efficient 4–bit comparator design by using 1-bit full adder module. Int. Conf. Parallel, Distrib. Grid Computing.
35. Fathi A., Azizian S., Sharifan N., (2017), Sensors and amplifiers: Sensor output signal amplification systems. In Handbook of Res. Nanoelectron. Sensor Model. Applic. 423-504, IGI Global.
36. Javey A., Guo J., Farmer D. B., Wang Q., Wang D., Gordon R. G., Lundstrom M., Dai H., (2004), Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics. Nano Lett. 4: 447-450.
37. Tijjani A., Galadanci G. S. M., Babaji G., (2020), Drain current characteristics of carbon-nanotube FET (CNTFET) with SiO2, ZrO2 and HfO2 as dielectric materials using FETToy code. NIPES Sci. Technol. Res. 2: 212-227.