Improving the fluid loss and rheological characteristics of Oil-based drilling fluid by using Copper Oxide nanoparticles

Document Type : Reasearch Paper


1 Department of Chemical Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.

2 Department of Chemical Engineering, Faculty of Engineering, Islamic Azad University, South Tehran Branch, Tehran, Iran.


A successful drilling operation depends strongly on a useful drilling fluid system. Using nanoparticles (NP)s to formulate intelligent drilling fluids gives them a wide range of optimal properties under different operating conditions and resolves any operational problems. In this study, in order to provide an effective solution for improving the rheological and high pressure/high temperature (HPHT) filtration properties of the oil-based drilling fluid (OBDF), copper oxide (CuO) NPs were synthesized with dandelion morphology. CuO dandelions were characterized by using XRD, FTIR, SEM, and zeta potential measurements. A long time stabilized nanofluid (NF) was prepared and evaluated. The OBDF samples consisting of various amounts of NF ranging from 1 to 11% (V/V) were prepared. Then, the fluid loss and rheological properties of OBDF were examined. The results showed that the OBDF containing 7% (V/V) NF was appropriate to improve the rheological properties such as yield point (YP), apparent viscosity (AV), and gel strength (GS). In addition, the minimum HPHT filtration value of 2 ml was acquired for the drilling fluid containing 9% (V/V) NF. In conclusion, CuO NPs demonstrated a positive effect on the performance of the OBDF system.


  1. Katende A., Boyou N. V., Ismail I., Chung D. Z., Sagala F., Hussein N., Ismail M. S., (2019), Improving the performance of oil based mud and water based mud in a high temperature hole using nanosilica nanoparticles. Colloid Surf. A. 577: 645–673.
  2. Saleh T. A., Ibrahim M. A., (2019), Advances in functionalized Nanoparticles based drilling inhibitors for oil production. Energy Rep. 5: 1293–1304.
  3. Majid N. F., Katende A., Ismail, I., Sagala F., Sharif N. M., Yunus, M. A. C., (2019), A comprehensive investigation on the performance of durian rind as a lost circulation material in water based drilling mud. Petrol. 5: 285-294.
  4. Bayat A. E., Moghanloo P. J., Piroozian A., Rafati R., (2018), Experimental investigation of rheological and filtration properties of water-based drilling fluids in presence of various nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 555: 256–263.
  5. Ismail A. R., Mohd N. M. N. A., Basir N. F., Oseh J. O., Ismail I., Blkoor S. O., (2020), Improvement of rheological and filtration characteristics of water‑based drilling fluids using naturally derived henna leaf and hibiscus leaf extracts. J. Petrol. Exp. Prod. Technol. 10: 3541–3556.
  6. Salih A. H., Bilgesu H., (2017), Investigation of rheological and filtration properties of water-based drilling fluids using various anionic nanoparticles. SPE Western Regional Meeting, Bakersfield, California, April, SPE-185638-MS.
  7. Noah A. Z., El Semary M. A., Youssef A. M., El-Safty M. A., (2017), Enhancement of yield point at high pressure high temperature wells by using polymer nanocomposites based on ZnO & CaCO3 nanoparticles. Egypt. J. Petrol. 26: 33-40.
  8. Alizadeh S., Sabbaghi S., Soleymani M., (2015), Synthesis of alumina/polyacrylamide nanocomposite and its influence on viscosity of drilling fluid. Int. J. Nano Dimens. 6: 271-276.
  9. Edalatfar M., Yazdani F., Baghban Salehi M., (2021), Synthesis and identification of ZnTiO3 nanoparticles as a rheology modifier additive in water-based drilling mud. J. Pet. Sci. Eng. 201: 108415.
  10. Azimi Dijvejin Z., Ghaffarkhah A., Sadeghnejad S., Vafaie Sefti M., (2019), Effect of silica nanoparticle size on the mechanical strength and wellbore plugging performance of SPAM/chromium (III) acetate nanocomposite gels. Polym. J. 51: 693-707.
  11. Aadland R. C., Jakobsen T. D., Heggset E. B., Long-Sanouiller H., Simon S., Paso K. G., Syverud K., Torsaeter O., (2019), High-temperature core flood investigation of nanocellulose as a green additive for enhanced oil recovery. Nanomater. 9: 665-672.
  12. Cheraghian G., (2017), Application of nano-particles of clay to improve drilling fluid. Int. J. Nanosci. Nanotechnol. 13: 177-186.
  13. Rezaei A., Nooripoor V., Shahbazi Kh., (2020), Applicability of Fe3O4 nanoparticles for improving rheological and filtration properties of bentonite water drilling fluids in the presence of sodium, calcium, and magnesium chlorides. J. Petrol. Exp. Product. Technol. 10: 2453–2464.
  14. Cheraghian G., (2021), Nanoparticles in drilling fluid: A review of the state-of-the-art. J. Mater. Sci. Technol. 13: 737-753.
  15. Zhao X., Qiu Z., Sun B., Liu S., Xing X., Wang M., (2019). Formation damage mechanisms associated with drilling and completion fluids for deep water reservoirs. J. Pet. Sci. Eng. 173: 112–121.
  16. Liu F., Jiang G.-C., Wang K., Wang J., (2017). Laponite nanoparticle as a multifunctional additive in water-based drilling fluids. J. Mater. Sci. 52: 12266–12278.
  17. Aftab A., Ismail A. R., Ibupoto Z. H., (2017), Enhancing the rheological properties and shale inhibition behavior of water-based mud using nanosilica, multiwalled carbon nanotube, and graphene nanoplatelet. Egypt. J. Petrol. 26: 291-299.
  18. Barry M. M., Jung Y., Lee J.-K., Phuoc T. X., Chyu M. K., (2015), Fluid filtration and rheological properties of nanoparticle additive and intercalated clay hybrid bentonite drilling fluids. J. Petrol. Sci. Engineer. 127: 338–346.
  19. Kang Y., She J., Zhang H., You L., Song M., (2016), Strengthening shale wellbore with silica nanoparticles drilling fluid. Petroleum. 2: 189–195.
  20. Boul P. J., Reddy B. R., Zhang J., Thaemlitz C., (2017), Functionalized nanosilicas as shale inhibitors in water-based drilling fluids. SPE Drill & Compl. 32: 121-130.
  21. An Y. X., Jiang G. C., Qi Y. R., Ge Q. Y., (2016), Plugging agent of shale base on nano flexible polymer. Appl. Mech. Mater. 835: 15–19.
  22. Huang X., Shen H., Sun J., Lv K., Liu J., Dong X., Luo S., (2018). Nanoscale laponite as a potential shale inhibitor in water-based drilling fluid for stabilization of wellbore stability and mechanism study. ACS Appl. Mater. Interf. 10: 33252–33259.
  23. Yuxiu A., Guancheng J., Yourong Q., Xianbin H., He S., (2016), High-performance shale plugging agent based on chemically modified graphene. J. Nat. Gas Sci. Eng. 32: 347–355.
  24. Sadeghalvaad M., Sabbaghi S., Afsharimoghadam P., (2016), Synthesis and application of the drilling mud additive in the presence of surfactants. Int. J. Nano Dimens. 7: 321-328.
  25. Kazemi-Beydokhti A. Hajiabadi S. H., (2018), Rheological investigation of smart polymer/ carbon nanotube complex on properties of water-based drilling fluids. Colloid. Surf. A. 556: 23–29.
  26. Rafati R., Smith S. R., Haddad A. S., Novara R., Hamidi H., (2018), Effect of nanoparticles on the modifications of drilling fluids properties: A review of recent advances. J. Petrol. Sci. Eng. 161: 61–76.
  27. Shashanka R., Kamacı Y., Taşb R., Ceylan Y., Savaş Bülbül A., Uzun O., Cahit Karaoglanli A., (2019), Antimicrobial investigation of CuO and ZnO nanoparticles prepared by a rapid combustion method. Phys. Chem. Res. 7: 799-812.
  28. Ananda Murthy H. C., Zeleke T. D., Tan K. B., Ghotekar S., Alam M. W., Balachandran R., Chan K.-Y., Sanaulla P. F., Anil Kumar M. R., Ravikumar C. R., (2021), Enhanced multifunctionality of CuO nanoparticles synthesized using aqueous leaf extract of Vernonia amygdalina Plant. Results in Chem. 3: 100141.
  29. Al-Yasiri M., Awad A., Pervaiz S., Wen D., (2019), Influence of silica nanoparticles on the functionality of water-based drilling fluids. J. Petrol. Sci. Eng. 179: 504-512.
  30. Gudarzifar H., Rezvani A. R., Sabbaghi S., (2021), Morphological investigation of Graphene Oxide/ Polyacrylamide super-elastic nanocomposite by a solution polymerization process with enhanced rheological property and thermal conductivity. Int. J. Nano Dimens. 12: 20-36.
  31. Kasiralvalad E., (2014), The great potential of nanomaterials in drilling & drilling fluid applications. Int. J. Nano Dimens. 5: 463-471.
  32. Pookmanee P., Sangthep P., Tafun J., Kruefu V., Kojinok S., (2018) Phanichphant S., Synthesis of copper oxide nanopowder by microwave method. Solid State Phenom. 283: 154–159.
  33. Manyasree D., Kiranmayi P., Ravikumar R., (2017), CuO Nanoparticles: Synthesis, Charactrization and their  bactericidal efficacy. Int. J. App. Pharm. 9: 71–74.
  34. Halder M., Islam M. D. M., Ansari Z., Ahammed S., Sen K., Islam S. K. M., (2017), Biogenic nano-CuO-catalyzed facile C-N cross-coupling reactions: Scope and mechanism, ACS Sustain. Chem. Eng. 5: 648–657.
  35. Umar A., Lee J. H., Kumar R., Al-Dossary O., Ibrahim A. A., Baskoutas S., (2016), Development of highly sensitive and selective ethanol sensor based onlance-shaped CuO nanostructures. Mater. Des. 105: 16–24.
  36. Ravichandran K., Palaniraj R., Abd Ahmed N. M. M. T. S., Gabr M. M., Ahmed A. R., Knorr D., Smetanska I., (2014), Effects of different encapsulation agents and drying process on stability of betalains extract. J. Food Sci. Technol. 51: 1257–1272.
  37. Esfandyari Bayat A., Jalalat Moghanloo P., Piroozian A., Rafati R., (2018), Experimental investigation of rheological and filtration properties of water-based drilling fluids in presence of various nanoparticles. Colloid. Surf. A. 555: 256–263.
  38. Perweena Sh., Begb M., Shankarb R., Sharmab Sh., Ranjan A., (2018), Effect of zinc titanate nanoparticles on rheological and filtration properties of water based drilling fluids. J. Petrol. Sci. Eng. 170: 844–857.
  39. Ghanbari S., Kazemzadeh E., Soleymani M., Naderifar A., (2015), A facile method for synthesis and dispersion of silica nanoparticles in water-based drilling fluid. Colloid Polym. Sci. 294: 381-388.
  40. Anoop K., Sadr R., Al-Jubouri M., Amani M., (2014), Rheology of mineral oil-SiO2 nanofluids at high pressure and high temperatures. Int. J. Therm. Sci. 77: 108–15.
  41. Yeu W. J., Katende A., Sagala F., Ismail I., (2019), Improving hole cleaning using low density polyethylene beads at different mud circulation rates in different hole angles. J. Nat. Gas Sci. Eng. 61: 333–343.
  42. Boyou N. V., Ismail I., Sulaiman W. R. W., Haddad A. S., Husein N., Hui H. T., Nadaraja K., (2019), Experimental investigation of hole cleaning in directional drilling by using nano-enhanced water-based drilling fluids. J. Pet. Sci. Eng. 176: 220–231.
  43. Gbadamosi A. O., Junin R., Abdalla Y., Agi A., Oseh J. O., (2019), Experimental investigation of the effects of silica nanoparticle on hole cleaning efficiency of water-based drilling mud. J. Pet. Sci. Eng. 172: 264–275.
  44. Anoop K., Sadr R., Yrac R., Amani M., (2019), Rheology of a colloidal suspension of carbon nanotube particles in a water-based drilling fluid. Powder Technol. 342: 585–593.
  45. Nourafkan E., Haruna M. A., Gardy J., Wen D., (2019), Improved rheological properties and stability of multiwalled carbon nanotubes/polymer in harsh environment. J. Appl. Polym. Sci. 136: 47205-47210.