Synthesis and characterization of Tetrachloromenthoxyphosphor@TiO2 nanocomposite as a high-performance photocatalyst for catalytic degradation of methyl violet

Document Type : Reasearch Paper


1 Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.

2 Department of Chemistry, Faculty of Science, Islamic Azad University, Ardabil Branch, Ardabil, Iran.


In this research, a new organic–inorganic hybrid photocatalyst (TCMP@TiO2) was successfully synthesized through supporting tetrachloromenthoxyphosphor (III) (TCMP) on titanium dioxide (TiO2) for elimination of methyl violet (MV) color from water media. The hybrid inorganic-organic catalyst of this nanocomposite was characterized by 1H-NMR, 31P-NMR, 13C-NMR, UV-Vis, IR, SEM, and mass spectrometry methods. The maximum dye elimination and significance of variables on the dye removal system in static condition were evaluated by response surface methodology (RSM). The maximum dye removal (83.6%) of MV was obtained under optimum conditions (0.02 g catalyst dosage, 35 °C, and pH 8) in the presence of 1.5 mM of hydrogen peroxide. The higher regression coefficient of the response and the variables (R2=0.9275) showed a well investigation of the outcomes by a regression-based polynomial model. In comparison with the previously reported photocatalytic decolorization systems, the dye removal system suggested in this work is quick, easy, and involves a small amount of catalyst. This new photocatalyst shows potent visible‐light photocatalytic activity for the decolorization of methyl violet, due to the generation the strong oxidants hydroxyl radical ( OH) and superoxide anion radical ( O2-) via photoelectrochemical decomposition of H2O and O2 in the presence of visible light irradiation. These outcomes proposed that TCMP@TiO2 could be applied for significant removal of dyes from textile wastewater.


  1. Robinson T., McMullan G., Marchant R., Nigam P., (2001), Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77: 247-255.‏


  1. Hammami S., Bellakhal N., Oturan N., Oturan M. A., Dachraoui M., (2008), Degradation of Acid Orange 7 by electrochemically generated OH radicals in acidic aqueous medium using a boron-doped diamond or platinum anode: A mechanistic study. Chemosphere. 73: 678-684.‏


  1. Melgoza D., Hernandez-Ramirez A., Peralta-Hernandez J. M., (2009), Comparative efficiencies of the decolourisation of Methylene Blue using Fenton’s and photo-Fenton's reactions. Photochem. Photobiol. Sci. 8: 596-599.‏


  1. Pare B., Jonnalagadda S. B., Tomar H., Singh P., Bhagwat V. W., (2008), ZnO assisted photocatalytic degradation of acridine orange in aqueous solution using visible irradiation. Desalination. 232: 80-90.‏


  1. Yassıtepe E., Yatmaz H. C., Öztürk C., Öztürk K., Duran C., (2008), Photocatalytic efficiency of ZnO plates in degradation of azo dye solutions. J. Photochem. Photobiol. 198: 1-6.‏


  1. Kong J. Z., Li A. D., Li X. Y., Zhai H. F., Zhang W. Q., Gong Y. P., Wu D., (2010), Photo-degradation of methylene blue using Ta-doped ZnO nanoparticle. J. Solid State Chem.183: 1359-1364.‏


  1. Cozzoli P. D., Kornowski A., Weller H., (2003), Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J. Am. Chem. Soc.125: 14539-14548.‏


  1. Jun Y. W., Jung Y. Y., Cheon J., (2002), Architectural control of magnetic semiconductor nanocrystals. J. Am. Chem. Soc.124: 615-619.‏


  1. Rao, A. R., Dutta, V., (2007), Low-temperature synthesis of TiO2 nanoparticles and preparation of TiO2 thin films by spray deposition. Sol. Energy Mater Sol. Cells. 91: 1075-1080.‏


  1. Xue X. D., Fu J. F., Zhu W. F., Guo X. C., (2008), Separation of ultrafine TiO2 from aqueous suspension and its reuse using cross-flow ultrafiltration (CFU). Desalination. 225: 29-40.

  1. Fatimah I., Said A., Hasanah U. A., (2015), Preparation of TiO2-SiO2 using rice husk ash as silica source and the kinetics study as photocatalyst in methyl violet decolorization. Bull. Chem. React. Eng. Catal. 10: 43-49.‏


  1. Liu G., Niu P., Yin L., Cheng H. M., (2012), α-Sulfur crystals as a visible-light-active photocatalyst. J. Am. Chem. Soc.134: 9070-9073.‏


  1. Liu G., Niu P., Cheng H. M., (2013), Visible‐light‐active elemental photocatalysts.Chem. Phys. Chem. 14: 885-892.‏


  1. Arzehgar Z., Hosna A., (2019), A convenient one‐pot method for the synthesis of symmetrical dialkyl trithiocarbonates using NH4OAc under mild neutral conditions. J. Chin. Chem. Soc. 66: 303-306.‏


  1. Soleiman-Beigi M., Arzehgar Z., (2013), A review study on chemical properties and food indexes of mastic Oil compared with Olive, sunflower and canola oils. The Ilamian traditional uses of mastic. J. Ilam Uni. Med. Sci. 21: 1-13.‏


  1. Sadegh-Malvajerd S., Arzehgar Z., Nikpour F., (2013), Regio-and Chemoselective Synthesis of 5-Aroyl-NH-1, 3-oxazolidine-2-thiones. Z. Naturforsch B. J. Chem. Sci. 68: 182-186.‏


  1. Yew S. P., Tang H. Y., Sudesh K., (2006), Photocatalytic activity and biodegradation of polyhydroxybutyrate films containing titanium dioxide. Polym. Degrad. Stab. 91: 1800-1807.‏


  1. Bhalkar B. N., Bedekar P. A., Patil S. M., Patil S. A., Govindwar S. P., (2015), Production of camptothecine using whey by an endophytic fungus: standardization using response surface methodology. RSC advances. 5: 62828-62835.‏


  1. Ansari S. A., Cho M. H., (2017), Growth of three-dimensional flower-like SnS2 on gC3N4 sheets as an efficient visible-light photocatalyst, photoelectrode, and electrochemical supercapacitance material. Sustain. Energy Fuels. 1: 510-519.‏


  1. Khan M. M., Ansari S. A., Pradhan D., Ansari M. O., Lee J., Cho M. H., (2014), Band gap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A.2: 637-644.‏


  1. Ansari S. A., Khan M. M., Ansari M. O., Cho M. H., (2016), Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J. Chem. 40: 3000-3009.‏


  1. Ansari S. A., Khan M. M., Ansari M. O., Cho M. H., (2015), Gold nanoparticles-sensitized wide and narrow band gap TiO2 for visible light applications: A comparative study. New J. Chem. 39: 4708-4715.‏


  1. Li W. J., Chou S. L., Wang J. Z., Liu H. K., Dou S. X., (2013), Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett.13: 5480-5484.


  1. Kang Q., Cao J., Zhang Y., Liu L., Xu H., Ye J., (2013), Reduced TiO2 nanotube arrays for photoelectrochemical water splitting.  J. Mater. Chem. A. 1: 5766-5774.‏


  1. Wang S., Zhao L., Bai L., Yan J., Jiang Q., Lian J., (2014), Enhancing photocatalytic activity of disorder-engineered C/TiO2 and TiO2 nanoparticles. J. Mater. Chem. A. 2: 7439-7445.‏


  1. Khanmohammadi Khorrami M. R., Shokri Aghbolagh Z., (2020), Synthesis and non‐parametric evaluation studies on high performance of catalytic oxidation‐extraction desulfurization of gasoline using the novel TBAPW11Zn@TiO2@PAni nanocomposite. Appl. Organomet. Chem.34: e5299.‏


  1. Pearse I. S., Heath K. D., Cheeseman J. M., (2005), Biochemical and ecological characterization of two peroxidase isoenzymes from the mangrove, Rhizophora mangle. Plant Cell Environ. 28: 612-622.‏


  1. Aghbolagh Z. S., Khorrami M. R. K., Rahmatyan M. S., (2020), Fabrication of (C4H9)4NPZnW11‐TiO2/PANI as an efficient nanocatalyst for dye degradation.Chem. Select. 5: 9424-9430.‏


  1. Zhang H., Lv X., Li Y., Wang Y., Li J., (2010), P25-graphene composite as a high performance photocatalyst. ACS Nano. 4: 380-386.‏


  1. Choi H., Al-Abed S. R., Dionysiou D. D., Stathatos E., Lianos P., (2010), TiO2-based advanced oxidation nanotechnologies for water purification and reuse. Sustain Sci. Eng.2: 229-254.‏


  1. Herrmann J. M., Duchamp C., Karkmaz M., Hoai B. T., Lachheb H., Puzenat E., Guillard C., (2007), Environmental green chemistry as defined by photocatalysis.  J. Hazard. Mater. 146: 624-629.‏