Optical properties and surface growth mechanism of amorphous Carbon nanolayers

Document Type : Reasearch Paper


1 Radiation Applications Research School, Nuclear Sciences and Technology Research Institute, 14395836, Tehran, Iran.

2 Department of Advanced Materials and Renewable Energy, Iranian Research Organization for Science and Technology (IROST), 33535111, Tehran, Iran.

3 Department of Physics, East Tehran Branch, Islamic Azad University, Tehran, Iran.


In this article, the growth kinetic and optical property of amorphous carbon (a-C) nanolayers deposited by ion beam sputtering deposition technique on glass substrates are investigated. The atomic force microscopy is used to measure the variation of surface roughness versus deposition time. According to the calculations, the roughness of thin films increases during the growth process as a fractal scaling law. The Hurst exponent (α) has a value higher than 0.5, and the growth exponent (β) changes in the range of 0.02 to 0.22. These fractal exponents predict that the growth process of amorphous carbon nanolayers obeys the rules of the Wolf-Villain model belonging to the Edwards-Wilkinson universality class, in which the relaxation and surface diffusion happen during the growth process. The results indicate that the optical band gap decreases by reducing the surface roughness, Hurst exponent and the correlation length during thin film growth which is the first observation of this trend.


[1] Lüth H. , (2001), Solid surfaces, interfaces and thin films. Springer Book.
[2] Persson B, Tosatti E., (2001), The effect of surface roughness on the adhesion of elastic solids. The J. Chem. Phys. 115: 5597-610.
[3] Vahabi M., Jafari G., Mansour N., Karimzadeh R., Zamiranvari J., (2008), Stochastic features of rough surfaces: Analysis of laser-induced silicon surface modification. J. Statistic. Mech: Theory and Exp. 2008: P03002.
[4] Ciavarella M., Joe J., Papangelo A., Barber J., (2019), The role of adhesion in contact mechanics. J.  Royal Soc. Interf. 16: 20180738.
[5] Timoshevskii V., Ke Y., Guo H., Gall D., (2008), The influence of surface roughness on electrical conductance of thin Cu films: An ab initio study. J. Appl. Phys. 103: 113705-113709.
[6] Persson B. N., Albohr O., Tartaglino U., Volokitin A., Tosatti E., (2004), On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Physics: Condens. Matt. 17: R1-R62.
[7] Kubiak K., Wilson M., Mathia T., Carval P., (2011), Wettability versus roughness of engineering surfaces. Wear.  271: 523-528.
[8] Javidjam A., Hekmatshoar M. H., Hedayatifar L., Abad S. N. K., (2018), Effect of surface roughness on electrical conductivity and hardness of silver plated copper. Mat. Res. Express. 6: 036407-036411.
[9] Lv Y., Zhou Y., Liu J., Shao M., Zhang Z., Song G., (2020), Production and performance study of Diamond-Like Carbon resistive electrode in MPGD. Nucl. Instrum. Meth. A. 958: 162759-162766.
[10] Gasab M. T. I., Uchiyama M., Nakatani T., Valanezhad A., Watanabe I., Fujiyama H., (2016), Advanced DLC coating technique on silicone-based tubular medical devices. Surf. Coat. Technol. 307: 1084-1087.
[11] Robertson J., (2002), Diamond-like amorphous carbon. Mater. Sci. Eng: R: Reports. 37: 129-281.
[12] Tang Y., Li Y., Yang Q., Hirose A., (2011), Characterization of hydrogenated amorphous carbon thin films by end-Hall ion beam deposition. Appl. Surf. Sci. 257: 4699-4705.
[13] Chiang K., Yang L., Wei R., Coulter K., (2008), Development of diamond-like carbon-coated electrodes for corrosion sensor applications at high temperatures. Thin Solid Films. 517: 1120-1124.
[14] Casiraghi C., Ferrari A., Ohr R., Chu D., Robertson J., (2004), Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology. Diam. Related Mater. 13: 1416-1421.
[15] Braun G., (2020), On the growth of a ballistic deposition model on finite Graphs. arXiv Preprint arXiv:200109836.
[16] Grüner C., Grüner S., Mayr S. G., Rauschenbach B., (2020), Avoiding anisotropies in on‐lattice simulations of ballistic deposition. Phys. Status Solidi (b). 2020: 2000036.
[17] Alves S. G., Ferreira S. C., (2016), Scaling, cumulant ratios, and height distribution of ballistic deposition in 3+ 1 and 4+ 1 dimensions. Phys. Rev. E. 93: 052131-052131.
[18] Alves S. G., Ferreira S. C., (2012), Eden clusters in three dimensions and the kardar-parisi-zhang universality class.  J. Stat. Mech: Theor. Expt. P10011.
[19] Hosseinabadi S., Masoudi A. A., Sadegh Movahed M., (2010), Solid-on-solid model for surface growth in 2+1 dimensions. Phys. B. 405: 2072–2077.
[20] Chen Y., Tang G., Xun Z., Zhu L., Zhang Z., (2017), Schramm–loewner evolution theory of the asymptotic behaviors of (2+ 1)-dimensional Wolf–Villain model. Phys. A: Statist. Mech. Appl. 465: 613-620.
[21] Koponen I., Hautala M., Sievänen O-P., (1997), Simulations of self-affine roughening and ripple formation on ion bombarded amorphous carbon surfaces. Nucl. Instrum. Meth. B.129: 349-355.
[22] Barabási A-L., Stanley H. E., (1995), Fractal concepts in surface growth: Cambridge University Press. 388 pages · ISBN-10: ‎0521483182.
[23] To T. B., de Sousa V. B., Reis F. D. A., (2018), Thin film growth models with long surface diffusion lengths. Phys. A: Statist. Mech. Appl. 511: 240-250.
[24] Pang E., Vo N., Philippe T., Voorhees P., (2015), Modeling interface-controlled phase trans formation kinetics in thin films. J. Appl. Phys. 117: 175304-175309.
[25] Casiraghi C., Ferrari A., Robertson J., (2005), The smoothness of tetrahedral amorphous carbon. Diam. Related Mater. 14: 913-920.
[26] Sarakinos K., (2019), A review on morphological evolution of thin metal films on weakly-interacting substrates. Thin Solid Films. 688: 137312-137316.
[27] Luis E. E. M., de Assis T. A., Ferreira S. C., Andrade R. F., (2019), Local roughness exponent in the nonlinear molecular-beam-epitaxy universality class in one dimension. Phys. Rev. E. 99: 022801-022805.
[28] Reis F. A., (2013), Normal dynamic scaling in the class of the nonlinear molecular-beam-epitaxy equation. Phys. Rev. E. 88: 022128-022133.
[29] Oliveira F. A., Ferreira R., Lapas L. C., Vainstein M. H., (2019), Anomalous diffusion: A basic mechanism for the evolution of inhomogeneous systems. Frontiers in Phys. 7: 18-25.
[30]  Sturrock M., (2016), Stochastic reaction–diffusion algorithms for macromolecular crowding. Phys. Biol. 13: 036010-036015.
[31]  Dae H. K., Jin Min K., (2011), Conserved noise restricted-solid-on-solid model on fractal substrates. Phys. Rev. E. 84: 011105-011110.
[32] Park S-C., Kim D., Park J-M., (2001), Derivation of continuum stochastic equations for discrete growth models. Phys. Rev. E. 65: 015102-015107.
[33] Huang Z-F., Gu B-L., (1996), Growth equations for the Wolf-Villain and Das Sarma-Tamborenea models of molecular-beam epitaxy. Phys. Rev. E. 54: 5935-5941.
[34] Chame A., Reis F. A., (2004), Scaling of local interface width of statistical growth models. Surf.  Sci. 553: 145-154.
[35] Zhipeng X., Gang T., Kui H., Hui X., Dapeng H., Yan Li., (2012), Asymptotic dynamic scaling behavior of the (1+1)-dimensional Wolf-Villain model. Phys. Rev. E. 85: 041126-041131.
[36] Zhipeng X., Gang T., Kui H., Hui X., Dapeng H., Yuling C., Rongji W., (2010), Mound morphology of the 2+1 -dimensional Wolf–Villain model caused by the step-edge diffusion effect. Phys. A: Statis. Mech. Appl. 389: 245635-245644.
[37] Kotrla M., Levi A., Šmilauer P., (1992), Roughness and nonlinearities in (2+1)-dimensional growth models with diffusion. EPL (Europhysics Letters). 20: 25-31.
[38] Sánchez-Vergara M. E., Alonso-Huitron J. C., Rodriguez-Gómez A., Reider-Burstin J. N., (2012), Determination of the optical GAP in thin films of amorphous dilithium phthalocyanine using the tauc and cody models. Molecules. 17: 10000-10013.
[39] Mohagheghpour E., Rajabi M., Gholamipour R., Larijani M. M., Sheibani S., (2016), Correlation study of structural, optical and electrical properties of amorphous carbon thin films prepared by ion beam sputtering deposition technique. Appl. Surf. Sci. 360: 52-58.
[40] Sagar R. U. R., Zhang X., Xiong C., Yu Y., (2014), Semiconducting amorphous carbon thin films for transparent conducting electrodes. Carbon. 76: 64-70.
[41] Salvadori M., Martins D., Cattani M., (2006), DLC coating roughness as a function of film thickness. Surf. Coat. Technol. 200: 5119-5122.
[42] Hosseinabadi S., Rajabpour M., Movahed M. S., Allaei S. V., (2012), Geometrical exponents of contour loops on synthetic multifractal rough surfaces: Multiplicative hierarchical cascade p model. Phys. Rev. E. 85: 031113-031117.
[43] Lai Z-W., Sarma S. D., (1991), Kinetic growth with surface relaxation: Continuum versus atomistic models. Phys. Rev. Lett. 66: 2348-2352.
[44] Sarma S. D., Ghaisas S., (1992), Solid-on-solid rules and models for nonequilibrium growth in 2+ 1 dimensions. Phys. Rev. Lett.  69: 3762-3768.
[45] Villain J., (1991), Continuum models of crystal growth from atomic beams with and without desorption. J. Phys. I. 1: 19-42.
[46]  Hosseinabadi S., Karimi Z., Masoudi A. A., (2020), Random deposition with surface relaxation model accompanied by long-range correlated noise.  Phys. A. 560: 125130-125135.
[47] Baydoğan N. D., (2004), Evaluation of optical properties of the amorphous carbon film on fused silica. Mater. Sci. Eng. B. 107: 70-77.