Design guidelines of InGaN nanowire arrays for photovoltaic applications

Document Type : Reasearch Paper


1 LPMR Laboratory, Mohamed-Cherif Messaadia University, Souk-Ahras, 41000, Algeria.

2 LMSSEF Laboratory, Larbi Ben M'hidi University, Oum El-Bouaghi, 04000, Algeria.


III-Nitride NanoWire array Solar Cells (NWSCs) combine the inherent properties of III-N semiconductors with waveguiding and confinement properties of nanowire arrays. In the present paper, some design guidelines of NWSCs made from Indium-Gallium-Nitride InGaN alloys are presented. Firstly, a detailed balance analysis was performed to show the importance of using InGaN materials to effectively convert the light to electricity, followed by an optical modelling to point out the advantages of using periodic nanowire arrays in designing solar cells. From the detailed balance analysis, it is expected that single junction solar cells made from In0.63Ga0.37N alloy result in the highest light-to-electricity conversion efficiency of 31%, and the Rigorous Coupled Wave Analysis RCWA simulations show that nanowire arrays made from InxGa1-xN fractions (x values) ranging between 50 and 77% alloys may achieve efficiencies of more than 33%, with a maximum efficiency of 37.7%  for In0.67Ga0.33N NW array. Substrate choice, array density and filling material impacts on device performance were also studied.


[1] Beeler M., Trichas E., Monroy E., (2013), III-nitride semiconductors for intersubband optoelectronics: A review. Semiconduc. Sci. Technol. 28: 074022.
[2] Razeghi M., (2011), III-nitride optoelectronic devices: From ultraviolet toward terahertz. IEEE Photonics J. 3: 263-267.
[3] Aran S., Liu X., Mi Z., (2013), Review of recent progress of III-nitride nanowire lasers. J. Nanophoton. 7: 1-28.
[4] Toledo N. G.,  Mishra U. K., (2012), InGaN solar cell requirements for higheciency integrated III-nitride/non-III-nitride tandem photovoltaic devices. J. Appl. Phys. 111: 114505.
[5]  Sequeira M. C., Mattei J.-G., Vazquez H., Djurabekova F. , Nordlund K., Monnet I., Mota-Santiago P., Kluth P., Grygiel C., Zhang S., (2021), Unravelling the secrets of the resistance of GaN to strongly ionising radiation, Communic. Phys. 4:1-8.
[6]  Chiamori H. C., Hou M., Chapin C. A., Shankar A., Senesky D. G., (2014), Characterization of gallium nitride microsystems within radiation and high-temperature environments, in: H. R. Shea, R. Ramesham (Eds.), Reliability, Packaging, Testing, and Characterization of MOEMS/MEMS, Nanodevices, and Nanomaterials XIII. Int. Soc. Optics Photon. SPIE. 8975: 42-49.
[7]  Zhao C.,  Alfaraj N.,  Chandra Subedi R.,  Liang J. W.,  Alatawi A. A.,  Alhamoud A. A.,  Ebaid M.,  Alias M. S.,  Ng T. K., Ooi B. S., (2018), III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications. Prog. Quant. Electron. 61: 1-31.
[8]  Sun H.,  Li X., (2019), Recent advances on III-nitride nanowire light emitters on foreign substrates - toward flexible photonics. Phys. Status Solidi (A)  216: 1800420.
[9 ] Shabannia R., (2019), Fast UV detection by Cu-doped ZnO nanorod arrays chemically deposited on PET substrate. Int. J. Nano Dimens.10:313-319.
[10] Wang Z. L., (2003), Nanowires and nanobelts: Materials, properties and devices. Volume 1: Metal and Semiconductor Nanowires. Springer Science & Business Media.
[11]  Aravindh S. A., Xin B., Mitra S., Roqan I. S.,  Najar A., (2020), GaN and InGaN nanowires prepared by metal-assisted electroless etching: Experimental and theoretical studies. Results in Phys. 19: 103428.
[12]  Wallentin J.,  Anttu N.,  Asoli D.,  Human M.,  Aberg I.,  Magnusson M. H.,  Siefer G.,  Fuss-Kailuweit P.,  Dimroth F.,  Witzigmann B.,  Xu H. Q.,  Samuelson L.,  Deppert K.,  Borgström M. T., (2013), InP nanowire array solar cells achieving 13.8% eciency by exceeding the ray optics limit. Science. 339: 1057-1060.
[13] Aberg I. ,  Vescovi G.,  Asoli D.,  Naseem U.,  Gilboy J. P.,  Sundvall C.,  Dahlgren A.,  Svensson K. E.,  Anttu N.,  Björk M. T., Samuelson L., (2016), A GaAs nanowire array solar cell with 15.3% effciency at 1 sun. IEEE J. Photovolt. 6: 185-190.
[14] Tang Y. B.,  Chen Z. H., Song H. S., Lee C. S., Cong H. T., Cheng H. M., Zhang W. J., Bello I., Lee S. T., (2008), Vertically aligned p-type singlecrystalline GaN nanorod arrays on n-type si for heterojunction photovoltaic cells. Nano Letters. 8: 4191-4195.
[15] Shockley W., Queisser H. J., (1961), Detailed balance limit of eciency of p-n junction solar cells. J. Appl. Phys. 32: 510-519.
[16] Green M., (2003), Third generation photovoltaics, Springer-Verlag Berlin Heidelberg.
[17] Sayad Y., (2016), Photovoltaic potential of III-nitride based tandem solar cells. J. Science: Adv. Mater. Dev. 1: 379-381.
[18] Goldhahn R., Schely P., (2007), Roppischer M., Ellipsometry of InN and related alloys, CRC Press, Ch. 9 : 52.
[19] Sakalauskas E., Tuna Ö., Kraus A., Bremers H., Rossow U., Giesen C., Heuken M., Hangleiter A., Gobsch G.,  Goldhahn R., (2012), Dielectric function and bowing parameters of InGaN alloys. Physica Status Solidi (B). 249: 485-488.
[20] Rumpf R. C., (2011), Improved formulation of scattering matrices for semianalytical methods that is consistent with convention. Prog. In Electro Magnet. Res. B. 35: 241-261.
[21] Schley P., Goldhahn R., Winzer A. T., Gobsch G.,  Cimalla V., Ambacher O., Rakel M., Cobet C., Esser N., Lu H.,  Scha W. J., (2006), Transition energies and stokes shift analysis for In-rich InGaN alloys. Physica Status Solidi (B). 243: 1572-1576.
[22] Goldhahn R., Buchheim C., Schley P., Winzer A. T., Wenzel H., (2007), Optical constants of bulk nitrides, Wiley Weinheim,  Ch. 5: 95-115.
[23] Kazazis S., Papadomanolaki E., Androulidaki M.,  Kayambaki M.,  Iliopoulos E., (2018), Optical properties of InGaN thin films in the entire composition range. J. Appl. Phys. 123: 125101.
[24] Park J.-H., Nandi R., Sim J.-K., Um D.-Y., Kang S., Kim J.-S., Lee C.-R., (2018), A III-nitride nanowire solar cell fabricated using a hybrid coaxial and uniaxial InGaN/GaN multi quantum well nanostructure. RSC Adv. 8: 20585-20592.
[25] Ra Y.-H., Lee C.-R., (2019), Understanding the p-type GaN nanocrystals on InGaN nanowire heterostructures. ACS Photonics. 6: 2397-2404.
[26] Schuster F., Weiszer S., Hetzl M., Winnerl A., Garrido J. A., Stutzmann M., (2014), Infuence of substrate material, orientation, and surface termination on GaN nanowire growth. J. Appl. Phys. 116: 054301.
[27] Lin C., Povinelli M. L., (2009), Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. Opt. Express. 17: 19371-19381.
[28] National Renewable Energy Laboratory, USA,, (Accessed, June 2021).
[29] Haggren T., Khayrudinov V., Dhaka V., Jiang H., Shah A., Kim M., Lipsanen H., (2018), III-V nanowires on black silicon and low-temperature growth of self-catalyzed rectangular InAs NWs. Scientic Reports. 8: 1-9.
[30] Aspnes D. E., Studna A. A., (1983), Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B. 27: 985-1009.
[31] Vogt M. R., (2015), Development of physical models for the simulation of optical properties of solar cell modules, Ph.D. thesis, Dissertation, Gottfried Wilhelm Leibniz Universitat Hannover, Hannover.