Synthesis and characterization of Nickel Metavanadate (Ni3V2O8)-application as photocatalyst and supercapacitor

Document Type : Reasearch Paper


1 Department of Chemical Engineering, JNTUACEA, Ananthapuramu-515002, India.

2 Department of Chemistry, Rajiv Gandhi University of Knowledge Technologies, RK Valley, Kadapa-516330, India.


With the emerging newer energy storage applications, transition metal vanadates are booming up as a better catalyst. Among all the transition metal vanadates, nickel vanadate nanoparticles (Ni3V2O8 NPs), are considered as a promising material with electrocatalytic and photocatalytic activity. We herein report circular and ovular structured Ni3V2O8 NPs by hydrothermal route without using any capping agent. Crystallinity, physical structure and morphology of the prepared samples were studied by XRD, TEM, and FT-IR spectroscopy. Photocatalytic activity of Ni3V2O8 NPs was studied by decolorizing industrially hazardous dyes such as malachite green (MG) and methylene blue (MB) dyes under ultra-violet light conditions for a regular interval of time (15 min) to 90 min. The experiment shows decolorization efficiencies as 52.43 and 57.66% for MG and MB, respectively. The electrochemical behaviour of the prepared compound was studied, and Energy storage capacity (specific capacitance) was elucidated as 193.5 Fg-1 with high reversibility property the material. These results indicated that Ni3V2O8 is a promising electrode material for supercapacitor and is an excellent photocatalyst. Hence, hydrothermally synthesized Ni3V2O8 NPs are expected to offer significant insight into their multifunctional applications.


[1] Mahmoudzadeh Andwari A., Pesiridis A., Rajoo S., Martinez Botas R., Esfahanian V., (2017), A review of battery electric vehicle technology and readiness levels. Renew. Sustain. Energy Rev. 78: 414–430.
[2] Balali Y., Stegen S., (2021), Review of energy storage systems for vehicles based on technology, environmental impacts, and costs. Renew. Sustain. Energy Rev. 135: 110185-110189.
[3] Yufei Z., Laiquan L., Haiquan S., Wei H., Xiaochen D., (2015), Binary metal oxide: Advanced energy storage materials in supercapacitors. J. Mater. Chem. A. 3: 43-59.
[4] Guoping W., Lei Zh., Jiujun Zh., (2012), A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41: 797-828.
[5] Forouzandeh P., Kumaravel V., Pillai S. C., (2020), Electrode  materials for supercapacitors: A Review of recent advances. Catalysts. 10: 969-973.
[6] Venkateswarlu P., Umeshbabu E., Kumar U. N., Nagaraja P., Tirupathi P., (2017), Facile hydrothermal synthesis of urchin-like cobalt manganese spinel for high-performance supercapacitor applications. J. Colloid Interf. Sci. 503: 17-27.
[7] Rajavel V., Ramu M., Justin Raj C., Marotrao Kale A., Kaya C., Palanisamy K., Chul Kim B., (2021), Electrodeposition of vanadium pentoxide on carbon fiber cloth as a binder-free electrode for high-performance asymmetric supercapacitor. J. Alloys Comp. 863: 158332-158336.
[8] Simon Justin A., Vickraman P., Joji Reddy B., (2019), Investigation on Carbonsphere@Nickel Cobalt Sulfide core-shell nanocomposite for asymmetric supercapacitor application. Energy Harvest. Sys. 6: 1-13.
[9] Rajeshkhanna G., Umeshbabu E., Justin P., Rao G. R., (2015), In situ fabrication of porous festuca scoparia-like Ni0.3Co2.7O4 nanostructures on Ni-foam: An efficient electrode material for supercapacitor applications. Int. J. Hydrog. Energ. 40:12303-12314.
[10] Dai Y., Li Q., Tan S., Wei Q., Pan Y., Tian X., Zhao K., Xu X., An Q., Mai L., Zhang Q., (2017), Nanoribbons and nanoscrolls intertwined three-dimensional vanadium oxide hydrogels for high-rate lithium storage at high mass loading level. Nano Energy. 40: 73–81.
[11] Behara D., Priya Alugoti D., Sree P., (2020), Multi element doped type-II heterostructure assemblies (N, S- TiO2/ZnO) for electrochemical crystal violet dye degradation. Int. J. Nano Dimens. 11: 303-311.
[12] Rajeshkhanna G., Umeshbabu E., Justin P., Rao G. R., (2017), Spinel ZnCo2O4 nanosheets as carbon and binder free electrode material for energy storage and electroreduction of H2O2. J. Alloys Comp. 696: 947-955.
[13] Arumugam S., Perumal S., Muthusamy G., Murugesan S., Ganesan K., (2020), Tetrabutylammonium perchlorate electrolyte on electrochemical properties of spinel MgCo2O4 nanoparticles. Int. J. Nano Dimens. 11: 26-31.
[14] Lakshmana Naik R., Justin P., Bala Narsaiah T., (2020), Size controlled hydrothermal synthesis and characterization of nickel metavanadate (NiVO3) nanoparticles. Int. J. Adv. Sci. Technol. 29: 10012 – 10018.
[15] Wenbin F., Xiulei L., Changhui Z., Ying L., Peng Z., Jinyuan Z., Xiaojun P., Erqing X., (2015), Facile hydrothermal synthesis of flowerlike ZnCo2O4 microspheres as binder-free electrodes for supercapacitors. Mater. Lett. 149: 1–4.
[16] Zamani A., Seyed Sadjadi M., Mahjoub A., Yousefi M., Farhadyar N., (2020), Synthesis and characterization ZnFe2O4@MnO and MnFe2O4@ZnO magnetic nanocomposites: Investigation of photocatalytic activity for the degradation of Congo red under visible light irradiation. Int. J. Nano Dimens. 11: 58-73.
[17] Khatri B., Rajbhandari A., (2020), Preparation, characterization and photocatalytic application of novel bismuth vanadate/ hydroxyapatite composite. Adv. J. Chem. Sect. A. 3: 789-799.
[18] Sajjadnejad M., Karimi Abadeh H., (2020), Processing of nanostructured TiO2 and modification of Its photocatalytic behavior for methylene blue degradation. Adv. J. Chem. Sect. A. 3: 422-431.
[19] David Mc., Gillian C., Colm O. D., (2018), NiVO3 fused oxide nanoparticles: An electrochemically stable intercalation anode material for lithium-ion batteries. J. Mater. Chem. A. 6: 18103-18107.
[20] McNulty D., Buckley D., O'Dwyer C., (2014), Polycrystalline vanadium oxide nanorods: Growth, structure and improved electrochemical response as a Li-ion battery cathode material. J. Electrochem. Soc. 161: A1321-A1329.
[21] McNulty D., Buckley D. N., Dwyer C. O., (2016), Comparative electrochemical charge storage properties of bulk and nanoscale vanadium oxide electrodes. J. Solid State Electrochem. 20: 1445–1458.
[22] Ravikumar C. R., Kotteeswaran P., Bheema raju V., Murugan A., Santosh M. S., Nagaswarupa H. P., Prashantha S. C., Anil kumar M. R., Shivakumar M. S., (2017), Influence of zinc additive and pH on the electrochemical activities of β-nickel hydroxide materials and its applications in secondary batteries. J. Energy Storage. 9: 12–24.
[23] Shiyao Lu., Tianxiang Zhu., Zhaoyang Li., Yuanchao P., Lei Sh., Shujiang D., Guoxin G., (2018), Ordered mesoporous carbon supported Ni3V2O8 composites for lithium-ion batteries with long-term and high-rate performance. J. Mater. Chem. A. 6: 7005-7013.
[24] Ravikumar C. R., Kotteeswaran P., Murugan A., Bheema Raju V., Santosh M. S., Nagaswarupa H. P., Nagabhushana H., Prashantha S. C., Anil Kumar M. R., Gurushantha K., (2017), Electrochemical studies of nano metal oxide reinforced nickel hydroxide materials for energy storage applications. Mater. Today: Proceed. 4: 12205-12214.
[25] Dwyer C. O., Gannon G., McNulty D., Buckley D. N., Thompson D., (2012), Accommodating curvature in a highly ordered functionalized metal oxide nanofiber: Synthesis, characterization, and multiscale modeling of layered nanosheets. Chem. Mater.  24: 3981-3992.
[26] Pratapkumar C., Prashantha S. C., Nagabhushana H., Anilkumar M. R., Ravikumar C. R., Nagaswarupa H. P., Jnaneshwara D. M., (2017), White light emitting magnesium aluminate nanophosphor: Near ultra violet excited photoluminescence, photometric characteristics and its UV photocatalytic activity. J. Alloys Comp. 728: 1124-1138.
[27] Shilpa Amulya M. A., Nagaswarupa H. P., Anil Kumar M. R., Ravikumar C. R., Kusuma K. B., (2021), Sonochemical synthesis of MnFe2O4 nanoparticles and their electrochemical and photocatalytic properties. J. Phys. Chem. Solids. 148: 109661-109665.
[28] British national formulary: BNF 69 (69 ed.)., (2015), British Medical Association. p. 34. London, Royal Pharmaceutical Society.
[29] Lakshmana Naik R., Kranthi K., Keerthiga G., Raghuram C., (2012), Effect of pyrolysis temperature on cobalt phthalocyanine supported on carbon nanotubes for oxygen reduction reaction. J. Appl. Electrochem. 42: 945–951.
[30] Ravikumar C. R., Kotteeswaran P., Bheema Raju V., Murugan A., Santosh M. S., Nagaswarupa H. P., Prashantha S. C., Anil Kumar M. R., Shivakumar M. S., (2017), Influence of zinc additive and pH on the electrochemical activities of β-nickel hydroxide materials and its applications in secondary batteries. J. Energy Storag. 9: 12–24.
[31] Naveen Kumar A., Jnaneshwara D. M., Ravikumar C. R., Anil Kumar M. R., Ananda Murthy H. C., Shshi Shekhar T. R., Jahagirdar A. A., (2020), La10Si6O27: Tb3+ nanomaterial; its photocatalytic and electrochemical sensor activities on disperse orange and fast blue dyes. Sens. Int. 2: 100076-100080.
[32] Abebe B., Ravikumar C. R., Amare Zereffa E., Naveen Kumar A., Ananda Murthy H. C., (2021), Photocatalytic and superior ascorbic acid sensor activities of PVA/Zn-Fe-Mn ternary oxide nanocomposite. Inorg. Chem. Communic. 123: 108343-108347.
[33] Avinash B., Ravikumar C. R., Anil Kumar M. R., Santosh M. S., Pratapkumar C., Nagaswarupa H. P., Ananda Murthy H. C., Deshmukh V. V., Bhatt A. S., Jahagirdar A. A., Alam M. W., (2021), NiO bio-composite materials: Photocatalytic, electrochemical and supercapacitor applications. Appl. Surf. Sci. Adv. 3: 100049-100054.
[34] Basavaraju N., Prashantha S. C., Nagabhushana H., Naveen Kumar A., Chandrasekhar M., Shashi Shekhar T. R., Ravikumar C. R., Anil Kumar M. R., Surendra B. S., Nagaswarupa H. P., (2021), Luminescent and thermal properties of novel orange–red emitting MgNb2O6 : Sm3+ phosphors for displays, photo catalytic and sensor applications. SN Appl. Sci. 3: 1-15.
[35] Shilpa Amulya M. A., Nagaswarupa H. P., Anil Kumar M. R., Ravikumar C. R., Prashantha S. C., Kusuma K. B., (2020), Sonochemical synthesis of NiFe2O4 nanoparticles: Characterization and their photocatalytic and electrochemical applications. Appl. Surf. Sci. Adv. 1: 100023-100028.
[36] Ranjitha R., Meghana K. N., Dileep Kumar V. G., Bhatt A. S., Jayanna B. K., Ravikumar C. R., Santosh M. S., Madhyastha H., Sakai K., (2021), Rapid photocatalytic degradation of cationic organic dyes using Li-doped Ni/NiO nanocomposites and their electrochemical performance. New J. Chem., RSC. 45: 796-809.
[37] Manjunatha A. S., Pavithra N. S., Shivanna M., Nagaraju G., Ravikumar C. R., (2020), NaFeS2 as a new photocatalytic material for the degradation of industrial dyes. J. Environm. Chem. Eng. 8: 104500-104505.
[38] Kusuma K. B., Manju M., Ravikumar C. R., Nagaswarupa H. P., Shilpa Amulya M. A., Anilkumar M. R., Avinash B., Gurushantha K., Ravikantha N., (2020), Photocatalytic and electrochemical sensor for direct detection of paracetamol comprising γ-aluminium oxide nanoparticles synthesized via sonochemical route. Sens. Int. 1:100039-100044.
[39] Barzinjy A. A., Hamad S. M., Aydın S., Mukhtar H., Ahmed Faiq H. S., (2020), Hussain green and eco-friendly synthesis of Nickel oxide nanoparticles and its photocatalytic activity for methyl orange degradation. J. Mater. Sci: Mater. Electron. 31: 11303–11316.
[40] Ravikumar C. R., Kotteeswaran P., Santosh M. S., Shruthi B., Bheemaraju V., Shivakumar M. S., Nagaswarupa H. P., (2016), Microstructure and electrochemical distinctiveness of [Beta]-nickel hydroxide by means of zinc additive and pH. Asian J. Chem. 28: 221-229.
[41] Inamdar A. I., Kim Y. S., Sohn J. S., Im H., Kim H., Kim D. Y., Kalubarme R. S., Park C., (2011), Supercapacitive characteristics of electrodeposited polyaniline Thin films grown on Indium-doped Tin-oxide substrates. J. Korean Phys. Soc. 59: 145-149.
[42] Ankit T., Manish C. J., Kushagra A., Bhuvaneshwari B., Raju K G., (2019), Three-dimensional Nickel Vanadium layered double hydroxide nanostructures    grown    carbon    cloth    for    high-performance flexible supercapacitor applications. Nanosc. Adv.1: 2400-2407.