INTRODUCTION

In recent years, Nano- boron- nitride materials such as graphene, BN fullerene-like and nanotubes have been attracting much attention due to their excellent and unique electrical and optical properties in the fields of material science and engineering. Many photon effects are energy dependent and find numerous applications in technology, telecommunication, medicine, etc [1-8]. Mass spectrum for BN clusters in pyridine solution demonstrated the existence of (BN)n (n=12-80) clusters [5]. These materials are better than nanotubes carbons in some cases [9, 10]. The possible candidate structures for the BN cages reported theoretically or synthesized in experiments [1, 10-20]. The results showed that the most stable isomer of \(B_{24}N_{24} \) is the structure with 2 octagons, 16 hexagons and 8 squares in S8 symmetry [21].

The endohedral metallofullerenes, fullerenes with encapsulated metal atoms were discovered after the discovery of fullerenes [22-24]. A metallofullerene is an endohedral fullerene that a metal atom is placed into the fullerenes. The hollow structure of this material can entangle small materials such as Helium, while there is no reaction with fullerenes molecule. In fact, the inside of fullerenes majority are very big and they can entangle all the elements in periodic table. Through fullerenes doping, they can be electrically conductive, semi-conductive or superconductive. Endohedral BN clusters [Yx(BN)n] with yttrium atoms encapsulated inside the BN clusters were detected [5].

Density-functional theory (DFT) as a computational quantum mechanical modelling method is used in physics, chemistry and materials science. This theory studies the electronic structure of many-body systems in particular atoms, molecules and the condensed phases. Using functionals, i.e. functions of another function in this theory, the properties of a many-electron system can be calculated. In the case of DFT, these
are functions of the spatially dependent electron density. In this work, the most stable $B_{12}N_{24}$ cage is considered to investigate polarizability and second hyperpolarizability properties of $M@B_{12}N_{24}$ cages using B3LYP/6-31G* time dependent density functional level of theory. $M@B_{12}N_{24}$ cages are not organic molecule therefore B3LYP/6-31G** method is not used in calculation of this work.

Computational details

In this work, the results were obtained by using the B3LYP/6-31G* level of time dependent density functional theory (TDDFT) with the Gaussian 98 quantum chemistry software package [21]. The pervious works indicated B3LYP/6-31G method is quite adequate for the different nanostructures [16-20, 22-23]. Minimum of total potential energy of endohedral complexes of the $B_{12}N_{24}$, $Li@B_{12}N_{24}$, $Na@B_{12}N_{24}$ and $K@B_{12}N_{24}$ cages study by full geometry optimization with B3LYP/6-31G* method.

The polarizabilities and hyperpolarizabilities additively from the contributions of different electronic excited states in a given molecule can be calculated using the sum-over-states (SOS) method. Subsequent analysis of the main excited configurations contributing to the relevant excited states allows characterizing the orbitals involved in the linear and nonlinear optical response.

Polarizability (α) and second hyperpolarizability (γ') can calculate as [24, 25]:

$$\alpha_{ij} = P(-\omega_p; \omega_0) \sum_a \frac{(\epsilon_k - \omega_0 - \omega_0 - i\eta)}{(\epsilon_k - \omega_0 - \omega_0 - i\eta)}$$

And

$$\gamma_{ij} = P(-\omega_p; \omega_0, \omega_0, \omega_0)$$

where a, b and c (r, s and t) indicate the occupied (virtual) molecular orbitals and μ_i is electric dipole transition moments. The lifetime broadening factors is selected 0.0168 and 0.01eV for the polarizability (α) and second (γ') hyperpolarizability, respectively. $\langle\alpha\rangle$ is exciton energy.

Molecular orbitals and molecular orbital energies can study by follow eigenvalue problem [26]:

$$H_{ij}(n_i, n_j, n_r, n_s) = (\epsilon_{n_i} - \epsilon_{n_j})\delta_{n_i, n_j} + H_{ij}(n_i, n_j, n_r, n_s)$$

In calculations, we set $H'=0$. In above equation ($\epsilon_{n_i} - \epsilon_{n_j}$) is the transition energy and ϵ_{n_i} is eigenvalues (ϵ_{n_i}) of TDDFT.

The average polarizability and second hyperpolarizability can calculate as:

$$\alpha = \frac{1}{3} \sum_i \alpha_i (-\omega, \omega)$$

$$\gamma = \frac{1}{15} \sum_i \sum_j (2\gamma_{ij}(-3\omega, \omega, \omega, \omega) + \gamma_{ij}(-3\omega, \omega, \omega, \omega))$$

where i and j represent either x, y and z in Cartesian coordinates. A more direct comparison with experiment is possible through $\langle\gamma'\rangle$ which reads:

$$\langle\alpha\rangle = \sqrt{\alpha^2 + \alpha_i^2}$$

$$\langle\gamma'\rangle = \sqrt{\gamma_R^2 + \gamma_I^2}$$

Here R and I indexes indicate real and imaginary components [24, 25].

RESULTS AND DISCUSSION

In this study, polarizability and second hyperpolarizability properties of the $B_{12}N_{24}$, $Li@B_{12}N_{24}$, $Na@B_{12}N_{24}$ and $K@B_{12}N_{24}$ cages have been investigated for the case of the M atoms at center of $B_{12}N_{24}$ cage by the TDDFT-B3LYP/6-31G* level of theory. Figs. 1(a-d) show optimized structures of the $B_{12}N_{24}$, $Li@B_{12}N_{24}$, $Na@B_{12}N_{24}$ and $K@B_{12}N_{24}$ cages, respectively. Corresponding with Figs. 1, the studied structures of $M@B_{12}N_{24}$ cages are created by the encapsulation doping on $B_{12}N_{24}$ cage. The $B_{12}N_{24}$ fullerene consists of with 2 octagons (Fig. 2(a), 16 hexagons (Fig. 2(b)) and 8 squares (Fig. 2(c)) in S8 symmetry.
Mean static polarizabilities ($\langle \alpha \rangle$), band gaps between HOMO and LUMO and the position of the first peak (α_1) against energy of $M@B_{24}N_{24}$ cages have been indicated in Table 1. Table 1 show $B_{24}N_{24}$ cage is an insulator and its wide energy gap (E_Δ) is 5.9 eV. For the $M@B_{24}N_{24}$ cages, the energy gaps varies between 2.25 eV, 1.87 and 0.99 eV for $Li@B_{24}N_{24}$, $Na@B_{24}N_{24}$ and $K@B_{24}N_{24}$, respectively. Therefore, the reactivity of $Li@B_{24}N_{24}$, $Na@B_{24}N_{24}$ and $K@B_{24}N_{24}$ cages is more than $B_{24}N_{24}$ cage due to encapsulation of M atom. When M atom locates into $B_{24}N_{24}$ cage, the change of energy gap of $B_{24}N_{24}$ cage is corresponding with the increasing ionic radius of M atom. Also, values of the excitation energies of $M@B_{24}N_{24}$ are smaller than that for $B_{24}N_{24}$ cage. The optical properties of $M@B_{24}N_{24}$ is corresponding to its energy gap. Thus, it seems that $M@B_{24}N_{24}$ cages can be used to produce the semiconductors with various band gaps. The mentioned results are in accordance to similar systems [12-17].

From Table 1 is seen that the $\langle \alpha \rangle$ of $M@B_{24}N_{24}$ cages are the bigger than that of $B_{24}N_{24}$. The $\langle \alpha \rangle$ of $K@B_{24}N_{24}$ is bigger than that for $Li@B_{24}N_{24}$ and $Na@B_{24}N_{24}$ cages. This is due to that excitation energies are in the denominator of the expression for the polarizability and smaller excitation energies result in larger values for the polarizability [12-15]. The pervious results for substituted doped fullerenes are in accordance to these results [12-17].

From mean static second polarizabilities ($\langle \gamma \rangle$) in Tables 1, it is seen that second polarizability
value of $K@B_{24}N_{24}$ cage is about 23 times larger than that of $B_{24}N_{24}$ cage. Therefore, encapsulation of M atom increases second polarizability value which is similar to the theoretical prediction for doped fullerenes [12-17].

Figs. 3(a), (b), (c) and 3 (d) show the polarizability dispersions of $B_{24}N_{24}$, $Li@B_{24}N_{24}$, $Na@B_{24}N_{24}$ and $K@B_{24}N_{24}$ cages against energy, respectively. Results indicate that major peaks values of polarizabilities of $B_{24}N_{24}$ cage reduce respect to that of the $M@B_{24}N_{24}$ cages. The first peak position of polarizability of $M@C_{60}X$ cages locates in lower frequencies relative to that for $B_{24}N_{24}$ cage. The results present that the polarizability dispersion depends on the M atom type and can been controllable by selection of the endohedral elements.

Second hyperpolarizabilities (γ) spectra of $B_{24}N_{24}$ and $M@B_{24}N_{24}$ cages are shown in Figs. 4 (a)-(d) against energy. The second polarizability spectra of $B_{24}N_{24}$ in comparison with that of $M@B_{24}N_{24}$ cage show the big peaks with very much smaller. Similar with the polarizability dispersion, the first peak position of second hyperpolarizabilities of $M@C_{60}X$ cages locates in lower frequencies relative to that for $B_{24}N_{24}$ cage. The $K@B_{24}N_{24}$ cage has the highest peak of second hyperpolarizabilities with respect to

<table>
<thead>
<tr>
<th>E_g</th>
<th>α</th>
<th>ω_1</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.9</td>
<td>919</td>
<td>6.2</td>
<td>2.45</td>
</tr>
<tr>
<td>2.25</td>
<td>2045</td>
<td>2.82</td>
<td>4.56</td>
</tr>
<tr>
<td>1.87</td>
<td>2063</td>
<td>2.60</td>
<td>4.8</td>
</tr>
<tr>
<td>0.99</td>
<td>2174</td>
<td>1</td>
<td>56.71</td>
</tr>
</tbody>
</table>

Table 1. Static different components of polarizability (in esu), the first peak position (α_1, in eV) and the band gap (E_g, in eV) with respect to energy and Static different components of second hyperpolarizability (in 10^{-34} esu) for $B_{24}N_{24}$, $Li@B_{24}N_{24}$, $Na@B_{24}N_{24}$ and $K@B_{24}N_{24}$.

Fig. 3. Mean polarizability against energy (eV) (in 10^3 esu) for cages (a) $B_{24}N_{24}$, (b) $Li@B_{24}N_{24}$, (c) $Na@B_{24}N_{24}$ and (d) $K@B_{24}N_{24}$.
Continued Fig. 3. Mean polarizability against energy (eV) [in 10^3 esu] for cages (a) $B_{24}N_{24}$, (b) $Li@B_{24}N_{24}$, (c) $Na@B_{24}N_{24}$ and (d) $K@B_{24}N_{24}$.
Fig. 4. Mean second polarizability against energy (eV) (in 10^{-36} esu) for cages (a) $B_{24}N_{24}$, (b) $Li@B_{24}N_{24}$, (c) $Na@B_{24}N_{24}$, and (d) $K@B_{24}N_{24}$.
BN, Li@BN and Na@BN cages. The highest peak value of K@B_{24}N_{24}, Na@B_{24}N_{24} and Li@C_{60}X molecules are about 30, 1.2 and 1.1 times larger than that of B_{24}N_{24} molecule, respectively. For energies in range 0.0 to 8.0 eV, comparison of Fig. 3(a) with Fig. 4(a) indicates there are not the two and three-photon peaks for B_{24}N_{24} molecules. These results are in accordance with others work [27-31]. Also, comparisons of Fig. 3(b) with Fig. 4(b) and Fig. 3(c) with Fig. 4(c) indicate there are not three-photon peaks for Li@B_{24}N_{24} and Na@B_{24}N_{24} cages for energies in range 0.0 to 8.0 eV. The two-photon peaks are observed in 3ω=6 and 6.8 eV for Li@B_{24}N_{24} and 3ω= 7 and 7.2 eV for Na@B_{24}N_{24} cage. The comparison of Fig. 2(d) with Fig. 3(d) indicates there are three-photon and two-photon peaks for K@B_{24}N_{24} cage for energies in range 0.0 to 8.0 eV. The two-photon intensities of K@B_{24}N_{24} are seen at 3ω=3.00, 3.2, 3.8, 5 and 6 eV. Also, the three-photon intensities of K@B_{24}N_{24} are seen at 3ω=4.80, 5, 7.5and 7.7 eV.

The highest peaks of K@B_{24}N_{24} respect to B_{24}N_{24}, K@B_{24}N_{24} and Na@B_{24}N_{24} cages can be explained by the following two effects. One is the large single photon intensities in same energies as shown in Fig. 2 for K@B_{24}N_{24}, and the other is double resonance enhancement occurring. These results are similar to other doped systems results [10, 27-31]. For example, the Eleanor et al. calculations indicated that Li@C_{60} has the second hyperpolarizability 3-5 times larger than that of pure C_{60} [28].

We propose following explanation for mentioned behaviors. The transition energy and transition matrix element between one-electron states are factors that can impress on polarizabilities and second hyperpolarizabilities spectra. Overall, polarizabilities and second hyperpolarizabilities depend on the degeneracy of energy levels, band gap and symmetry properties of cage. The structure, bond lengths and gap energy of cage change when M atom locates into the B_{24}N_{24} cage. It indicates that M atom type effects on cage structure and symmetric properties. Thereby, M atom type and encapsulation change the cage symmetry and therewith changes electronic structures and polarizabilities and second hyperpolarizabilities spectra of B_{24}N_{24} cages.

CONCLUSIONS

Effects of encapsulation and type of M atom on the polarizability and second hyperpolarizability of B_{24}N_{24} cage studied using the TDDFT-B3LYP/6-31G* level. Furthermore, the SoS approximation is applied for study of the polarizability and hyperpolarizability of the B_{24}N_{24}, Li@B_{24}N_{24}, Na@B_{24}N_{24} and K@B_{24}N_{24} cages. The structural, symmetric properties, the polarizability and hyperpolarizability spectra of the B_{24}N_{24} cage change by M atom encapsulation. Also, the static polarizability and hyperpolarizability of the M@B_{24}N_{24} molecules is bigger than that of...
the B_{24}^N cage. Our calculations conclude that $M@B_{24}^N$ cages are interesting candidates for application in optoelectronics.

CONFLICT OF INTERESTS
There is no conflict of interest.

REFERENCES