Investigating thermo-physical properties and thermal performance of Al2O3 and CuO nanoparticles in Water and Ethylene Glycol based fluids

Document Type : Reasearch Paper


1 Phd student, Department of Biosystem Mechanical engineering, Bonab Branch, Islamic Azad University, Bonab, Iran.

2 Assistant Professor, Department of Biosystem Mechanical engineering, Bonab Branch, Islamic Azad University, Bonab, Iran.


The thermophysical properties and thermal performance of water- and ethylene-glycol-based nanofluids containing  and CuO nanoparticles were examined. Nanofluids were prepared at four concentrations (1- 4 vol%) using an electric mixer and magnetic stirrer, and the thermophysical properties were measured. Surfactants were used to improve stability. The transient hot-wire method (KD2-Pro device), Dynamic Light Scattering (DLS), and Ostwald viscometer (ASTM D445-06) were used to measure the resulting thermal conductivity coefficient, nanoparticle diameter, and nanofluid viscosity, respectively. The experiments were carried out in the 20 to 50 °C temperature range. Adding 1 wt% sodium dodecyl sulfate (SDS) to the CuO–water and the same amount of sodium dodecylbenzene sulfonate (SDBS) to the –water nanofluid were found to stabilize them for 20 and 22 days, respectively. Increasing the nanoparticle volume fraction, raising the temperature, and reducing nanoparticle diameter were found to increase the thermal conductivity coefficient. The density also increases with the nanoparticle volume fraction in the base fluid increasing. Moreover, at the same volume fraction, the CuO–water nanofluid had a higher density than –water. Better base fluid thermal properties amplify the effect on the nanofluid's thermal conductivity coefficient. The actual thermal conductivity coefficient was determined by comparing model predictions of the coefficient.


[1] Azari A., Kalbasi M., and Rahimi M., (2014), CFD and experimental investigation on the heat transfer characteristics of alumina nanofluids under the laminar flow regime. Brazil. J. Chem. Eng. 31: 469-481.
[2] Ghadimi  A., Saidur R.,  and Metselaar H., (2011),  A  review  of  nanofluid  stability properties and characterization in stationary conditions. Int. J. Heat and Mass Trans. 54: 4051-4068.
[3] Abu-Nada  E.,  Masoud Z. N., Oztop H. F., Campo A., (2010),  Effect  of  nanofluid  variable  properties  on  natural convection  in  enclosures.  Int.  J.  Therm. Sci. 49: 479-491.
[4] Murshed S., Leong K. C., Yang C., (2005), Enhanced thermal conductivity of TiO2-water based nanofluids. Int. J. Therm. Sci. 44: 367–73.
[5] Das S. K., Choi S. U.S., Yu W., Pradeep T., (2008), Nanofluids: Science and technology. Nanofluides. pp. 9.
[6] Karthik R., Harish Nagarajan R., Raja B., Damodharan P.,  (2012), Thermal  conductivity of CuO–DI Water Nano  fluids  using  3-x measurement  technique  in  a  suspended micro-wire.  Exp.  Therm.   Fluid Sci. 40: 1–9.
[7] Kucharska B., Krawczynska A., Rożniatowski K., Zdunek J., Poplawski K., Sobiecki J. R., (2017), The effect of current types on the microstructure and corrosion properties of Ni/NanoAl2O3 composite coatings. Mater. Technol. 51: 403–411.
[8] Ghazvini M., Akhavan-Behdadi M. A., Rasouli E.,  Raisee M., (2012),  Heat  transfer properties  of  nanodiamond–engine  Oil nanofluid  in  laminar  flow.  Heat  Transf. Eng. 33: 525–532.
[9] Leong K. Y., Saidur R., Kazi S. N., (2010), Performance  investigation  of  an  automotive  car radiator  operated  with  nanofluid-based  coolants nanofluid  as  a  coolant  in  a  radiator.  Appl. Therm. Eng. 30: 2685-2692.
[10] Leong K. Y.,  Saidur R., Kazi S. N., Mamun A. H., (2010), Performance  investigation  of  an automotive  car  radiator operated with nanofluidbased  coolants  (nanofluid  as  a  coolant  in  a radiator). Appl. Therm. Eng. 30: 2685-2692.
[11] Syam Sundar L., Sharma K., Naik M., Singh M., (2013), Empirical and theoretical correlations on viscosity of nanofluids :A  review. Renew. Sustain. Energy. 25: 670–686.
[12] Pugalenthi P., Jayaraman M., Subburam V., (2019), Study of the microstructures and mechanical properties of aluminium hybrid composites with SiC and Al2O3. Mater. Technol. 53: 49–55.
[13] Pastoriza-Gallego  M. J.,  Casanova  C.,  Legido  J. L.,  Pineiro  M. M., (2011), CuO  in  water nanofluid:  Influence  of  particle  size  and  polydispersity  on  volumetric  behaviour  and viscosity. Fluid Phase Equil. 300: 188-196.
[14] Singh P., Venkatachalapathy S., Kumaresan G., (2014), Heat  transfer studies  on  condensation  using  heat  pipes.  Proceedings  of  applied  mechanics  and  materials,  switzerland:  Trans  Tech Publication Inc. 592: 1617-1621.
[15] Turkyilmazoglu M., (2015), Analytical solutions of single and multi-phase models  for  the  condensation  of  nanofluid  film  flow  and  heat transfer.  Europ.  J. Mech.  53:  272-277.
[16] El Mghari H., Louahlia-Gualous H., Lepinasse E., (2015), Numerical study of  nanofluid  condensation  heat  transfer  in  a  square microchannel.  Numeric.  Heat  Transf. 68: 1242-1265.
[17] Azimi H., Taheri R., (2015), Electrical conductivity of CuO nanofluids. Int. J. Nano Dimens. 6: 77-81.
[18] Sabbaghi S., Orojlou H., Parvizi M., Saboori R., Sahooli M., (2012), Effect of temperature and time on morphology of CuO nanoparticle during synthesis. Int. J. Nano Dimens. 3: 69-73.
[19] Bhuiyan M. H. U., Saidur R., Mostafizur R. M., Mahbubul I. M., Amalina M. A., (2015), Experimental investigation on surface tension of metal oxide–water  nanofluids.  Int.  Communic. Heat and Mass Transf. 65: 82-88.
[20] Pecora R., (1985), Dynamic light scattering: Applications of photon correlation spectroscopy. springer.
[21] Chandrasekar M., Suresh S., and Bose A. C., (2010), Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofuid. Exp. Termal Fluid Sci. 34: 210–216.
[22] Kong L., Sun J., Bao Y., (2017), Preparation, characterization and tribologicalmechanismof nanofuids. RSC Advances. 7: 12599–12609.
[23] Maxwell J. C., (1904), A Treatise on electricity and magnetism. second edition. Oxford University Press, Cambridge. p. 435. 
[24] Maxwell Garnett  J.,  (1904), Colours  in metal glasses and  in metallic  films. Philos .Trans. R. Soc. London. 203: 385-420.
[25] Hamilton R. L., Crosser O. K., (1962), Thermal conductivity of heterogeneous tow-component systems. I & EC Fundam. 1:182-191.
[26] Jeffrey D. J., (1973), Conduction through a random suspension of spheres. Proc. R. Soc. London. 335: 355-367.
[27] Lu S.,  Lin H., (1996), Reflective  conductivity  of  composite  containing  aligned  spherical  inclusions  of finite conductivity. J. Appl. Phys. 79: 6761–6769.
[28] Timofeeva E. V., Gavrilov A. N., McCloskey J. M., Tolmachev Y. V., (2007), Thermal conductivity and particle  agglomeration  in  alumina  nanofluids:  experiment  and  theory.  Phys. Rev.  76: 061203-061208.
[29] Pak B. C., Cho Y. I., (1998), Hydraulic  and  heat  transfer  study  of  dispersed  fluids  with  submicron metallic oxide particles. Exp. Heat Transf. 11: 151-170.
[30] Nagasaka Y., Nagashima A., (1981), Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot wire method. J. Phys. 14: 1435–1440.
[31] Franco A., (2007), An apparatus for the routine measurement of thermal conductivity of materials for building application based on a transient hot-wire method. Appl. Therm. Eng. 27: 2495–2504.
[32] Wen D., Lin G., Vafaei S., Zhang K., (2009), Review of nanofluids for heat transfer applications. Particuology. 7: 141–150.
[33] Wang X.-Q., Mujumdar A. S., (2008), A review on nanofluids—Part I: Theoretical and numerical investigations. Braz. J. Chem. Eng. 25: 613–630.
[34] Einstein A., (1906), Eineneuebestimmung der moleküldimensionen. Annals. Phys. 324: 289–306.
[35] Krieger I. M., Thomas J. D., (1957), A mechanism for non-newtonian flow in suspensions of rigid spheres. Transact. Soc. Rheol. 3: 137–152.
[36] Nielsen L. E., (1970), Generalized equation for the elastic moduli of composite materials. J. Appl. Phys. 41: 4626–4627.
[37] Mooney M., (1951), The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 6: 162–170.
[38] Batchelor G. K., (1977), The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83: 97–117.
[39] Lundgren T. S., (1972), Slow flow through stationary random beds and suspensions of spheres. J. Fluid Mech. 51: 273–299.
[40] Brinkman H. C., (1952), The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 20: 571-577.
[41] Chen H., Ding Y., Tan C., (2007), Rheological behaviour of nanofluids. New J. Phys. 9: 367-371.
[42] Frankel N. A., Acrivos A., (1967), On the viscosity of a concentrated suspension of solid spheres. Chem. Eng. Sci. 22: 847–853.
[43] Cheng N. S., Law A. W. K., (2003), Exponential formula for computing effective viscosity. Powder Technol. 129: 156–160.
[44] Kitano T., Kataoka T., Shirota T., (1981), An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers. Rheologica. Acta. 20: 207–209.
[45] Bicerano J., Douglas J. F., Brune D. A., (1999), Model for the viscosity of particle dispersions. J. Macromol. Sci. 39: 561–642.
[46] Tseng W. J., Chen C. N., (2003), Effect of polymeric dispersant on rheological behavior of nickel–terpineol suspensions. Mater. Sci. Eng. 347:145–153.
[47] Graham A. L., (1981), On the viscosity of suspensions of solid spheres. Appl. Sci. Res. 37: 275–286.
[48] Masoumi N., Sohrabi N., Behzadmehr A., (2009), A new model for calculating the effective viscosity of nanofluids. J. Phys. D. Appl. Phys. 42: 055501-055505.
[49] Pak B. C., Cho Y. I., (1998), Hydraulic  and  heat  transfer  study  of  dispersed  fluids  with  submicron metallic oxide particles. Exp. Heat Transf. 11:151-170.
[50] Kulkarni D. P., Das D. K., Chukwu G. A., (2006), Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid). J. Nanosci. Nanotechnol. 6: 1150–1154.
[51] Nguyen C. T., Desgranges F., Roy G., Galanis N., Mare T., Boucher S., Angue Mintsa H., (2007), Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon. Int. J. Heat Fluid Flow. 28:1492–1506.
[52] Namburu P. K., Das D. K., Tanguturi K. M., Vajjha R. S., (2009), Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties. Int. J. Therm. Sci. 48: 290–302.
[53] Chandrasekar M., Suresh S., Chandra Bose A., (2010), Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp. Therm. Fluid Sci. 34: 210–216.
[54] Abu-Nada E., (2009), Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection. Int. J. Heat Fluid Flow. 30: 679–690.
[55] Masoud Hosseini S., Moghadassi A. R., Henneke D. E., (2010), A new dimensionless group model for determining the viscosity of nanofluids. J. Therm. Anal. Calorim. 100: 873–877.
[56] Avsec J., Oblak M., (2007), The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics. Int. J. Heat Mass Transf. 50: 4331–4341.
[57] Keblinski P., Phillpot S. R., Choi S., Eastman J. A., (2002), Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat and Mass Transf. 45: 855-863.
[58] Lee S., Choi S., Li S., Eastman J. A., (1999), Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J. Heat Transf. 121: 280-289.
[59] Heyhat M. M., Kowsary F., Rashidi A. M., Alem Varzane Esfehani S., Amrollahi A., (2012), Experimental investigation of turbulent flow and convective heat transfercharacteristics of alumina water nanofluids in fully developed flow regime. Int. Commun. Heat Mass Transf. 39: 1272–1278.
[60] Ho C., Liu W., Chang Y., Lin C., (2010), Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int. J. Therm. Sci. 49:1345–1353.
[61] Vajjha R. S., Das D. K., (2009a), Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int. J. Heat Mass Transf. 52: 4675–4682.
[62] Das S. K., Putra N., and Roetzel W., (2003a), Pool boiling characteristics of nano-fluids. Int. J. Heat Mass Transf.46: 851–862.
[63] Raja Sekhar Y., Sharma K. V., (2015), Study of viscosity and specific heat capacity characteristics of water-based Al2O3 nanofluids at low particle concentrations. J. Exp. Nanosc. 10: 86-102.
[64] Das S. K., Putra N., Thiesen P., Roetzel W., (2003), Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125: 567-574.