Cancer nanomedicine: A review on approaches and applications towards targeted drug delivery

Document Type : Review


School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai-48, India.


Cancer prevails to be one of the main reasons of death across the globe. A large group of drugs and other therapies exist in the market for cancer treatment, yet, these conventional therapies have huge drawbacks such as low-specificity, off-target toxicity, and multidrug resistance that impact the standard of living of the patients. The concept of nanomedicine for targeted cancer therapy was able to overcome these problems, enhance the antitumor activity, and reduce systemic toxicity. Nanomedicine aims at utilizing properties of materials in the range of 1 to 100 nm for the treatment of diseases. Nanomedicine can achieve targeted therapy owing to the uncommon properties of nanoparticles and cancer itself. Cancer nanomedicine is used not only for treatment but its potential can also be expanded for early cancer diagnosis and tumor imaging. Many nanomedicines are currently in various phases of clinical trials and a few have already been authorized by the Food and Drug Administration for clinical use. This review highlights different approaches to targeted delivery of drugs and summarizes the utilization of various nanoparticles in targeted drug delivery, combination therapy, diagnosis, and imaging. Finally, this review also discusses the challenges that need to be overcome and provides an insight into future perspectives in the area of cancer nanomedicine.


[1] Siegel R. L., Miller K. D., Jemal A., (2019), Cancer statistics. CA Can. J. Clin.  69: 7-34.
[2] Lakshya M., Ignacio G. C., Gowri Sree V., Hemalatha S., Uma K.A., Raji S., (2020), High-throughput,  Label-Free Quantitative Proteomic Studies of the Anticancer effects of Electrical Pulses with Turmeric Silver Nanoparticles: an in vitro Model Study. Nat. Sci. Rep. 10: 7258-7263.
[3] Mittal L., Ranjani S., Shariq Ahmed M., Jeya Shree T., Tahira A., Poompavai S., Camarillo I. G., GowriSree V., Raji S., Hemalatha S., (2020), Turmeric-silver-nanoparticles for effective treatment of breast cancer and to break CTX-M15 mediated antibiotic resistance in Escherichia coli. Inorg. Nano-Met. Chem. (In press).
[4] Pérez-Herrero E., Fernández-Medarde A., (2015), Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Euro. J. Pharm.  Biopharm. 93: 52-79.
[5] Arpudha M., Priya S., Muhammed A. P., Mubarakali D., Hemalatha S., (2019), Apoptotic-inducing factor 1 (AIF1) is critical in cembranoid mediated apoptosis to control cancer. Biocat. Agri. Biotech. 22: 101343-101349.
[6] Shariq A. M., Ranjani S., Tahira A., Waseem M., Khan J., Kashif M., Hemalatha S., (2019), Biogenic AgNps synthesized via endophytic bacteria and its biological applications. Envir. Sci. Pol. Res. 26: 26939–26946.
[7] Schirrmacher V., (2019), From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol.. 54: 407-419.
[8] Zhao C. Y., Cheng R., Yang Z., Tian Z. M., (2018), Nanotechnology for cancer therapy based on chemotherapy. Molec.  23: 826-835.
[9] Rohini B., Tahira A., Waseem M., Khan J., Kashif  M., Hemalatha S.,  (2019), AgNPs from nigella sativa control breast cancer: An in vitro study. J. Envir. Path. Tox. Oncol. 38: 185-194.
[10] Tran S., De Giovanni P. J., Piel B., Rai P., (2017), Cancer nanomedicine: A review of recent  success in drug delivery. Clin. Transl. M.  6: 44-56.
[11] Tahira A., Vabeiryureilai M., Senthil Kumar N., MubarakAli D., Hemalatha S., (2019), Fungal-mediated synthesis of pharmaceutically active silver nanoparticles and anticancer property against A549 cells through apoptosis. Envir. Sci. Pol. Res. 26: 13649-13658.
[12] Kim B. Y., Rutka J. T., Chan W. C., (2010), Nanomedicine. New Engl. J. Med.  363: 2434-2443.
[13] Begum S., Priya S., Sundararajan R., Hemalatha S., (2017), Novel anticancerous compounds from sargassum wightii: In silico and in vitro approaches to test the antiproliferative efficacy. J. Adv. Phar. Edu. Res. 7: 272-277.
[14] Ubaid R., Hemalatha S., (2017), Marine endophytic actinomycetes assisted synthesis of copper nanoparticles (CuNPs): Characterization and antibacterial efficacy against human pathogens. Mat. Let. 194: 176-180.
[15] Ubaid R., Saroj Kumar S.., Hemalatha S., (2018), Growth inhibitory effect of oven dried copper nanoparticles (cunps) on drug resistant clinical isolates. Ira. J. Mat. Sci. Eng. 15: 12-20.
[16] Boisseau P., Loubaton B., (2011), Nanomedicine, nanotechnology in medicine. C. R. Phys. 12: 620-636.
[17] Tahira Ak., Mohd S. Kh., Hemalatha S., (2018), A facile and rapid method for green synthesis of Silver Myco nanoparticles endophytic fungi. Int. J. Nano. Dimens. 9: 435-441.
[18] Tahira Ak., Mohd Shahanbaj Kh., Hemalatha S., (2018), Novel Silver nanoparticles synthesized from anthers of couroupita guianensis Abul. Control growth and biofilm formation in human pathogenic bacteria. Nano. Biomed. Eng. 10: 250-257.
[19] Ubaid R., Hemalatha S., (2019), Effect of biosynthesized copper nanoparticles (Cunps) on growth and biofilm formation in fluconazole resistant Candida albicans. J. Micro. Biotech. Food Sci. 9: 21-24.
[20] Tahira A., Priya S., Sarojkumar S., Mohd Shahanbaj Kh., Hemalatha S., (2019), Ta-AgNps are potential antimicrobial resistance breakers. J. Nano. Str. 9: 376-383.
[21] Tahira A., Hemalatha S., (2019), Mycosilver nanoparticles: Synthesis, characterization and screening the  efficacy against plant pathogenic fungi.  Bionanosci. 9: 296–301.
[22] Ranjani S., Shariq Ahmed M., Ruckmani K., Hemalatha S., (2019), Green nanocolloids control Multi drug resistant pathogenic bacteria. J. Cluster Sci. (In press).
[23] Ranjani S., Tamanna K., Hemalatha S., (2019), Triphala green nano colloids: synthesis, characterization and screening biomarkers. Appl. Nanosci.234: 10300-10314.
[24] Ranjani S., Faridha Begum I., Santhoshini J., Senthil Kumar N., Ruckmani K., Hemalatha S., (2020), Mimosa pudica floral nanoparticles: a potent antibiotic resistance breaker. Inorg. Nano-Met. Chem. (In press).
[25] Ranjani S., Faridha Begum I., Tasneem I. K., Senthil Kumar N., Hemalatha S., (2020), Silver decorated green   nanocolloids as potent antibacterial and antibiofilm agent against antibiotic resistant organisms isolated from tannery effluent. Inorg. Nano-Met. Chem. (In press).
[26] Ranjani S., Shariq Ahmed M., MubarakAli D., Ramachandran C., Senthil Kumar N., Hemalatha S., (2020), Toxicity assessment of silver nanoparticles synthesized using endophytic fungi against nosacomial infection. Inorg. Nano-Met. Chem. (In Press).
[27] Ranjani S., Shariq Ahmed M., Mohd A., Senthil Kumar N., Ruckmani K., Hemalatha S., (2020), Synthesis, characterization and applications of endophytic fungal nanoparticles. Inorg. Nano-Met. Chem. 51: 280-287.
[28] Ranjani S., Salman A., Farzi M., Shruthy Priya P., Mohammad W., Ruckmani K., Hemalatha S., (2020), Multi potent Aromatic nano colloid: Synthesis, characterization and applications, AMB Express. 10: Art. No. 168.
[29] Mariam Adhila H., Shariq Ahmed M., Ranjani S., Senthilkumar N., Hemalatha S., (2020), Marine endophytic fungi mediated silver nanoparticles and their application in plant growth promotion in Vigna radiata. L.  Int. J. Nano Dimens. 12: 1-10.
[30] Martins J. P., Das Neves J., de la Fuente M., Celia C., Florindo H., Günday-Türeli N., Popat A., Santos J. L., Sousa F., Schmid R., Wolfram J., (2020), The solid progress of nanomedicine. Drug Deliv. Transl. Res. 10: 726-729.
[31] Anselmo A. C., Mitragotri S., (2019), Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 4: e10143.
[32] Xin Y., Yin M., Zhao L., Meng F., Luo L., (2017), Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Can. Biol. Med. 14: 228-234.
[33] Pearce A. K., O’Reilly R. K., (2019), Insights into active targeting of nanoparticles in drug delivery: Advances in clinical studies and design considerations for cancer nanomedicine. Bioconjug. Chem. 30: 2300-2311.
[34] Shi J., Kantoff  P. W., Wooster R., Farokhzad O. C., (2017), Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Can. 17: 20-27.
[35] Rosenblum D., Joshi N., Tao W., Karp J. M., Peer D., (2018), Progress and challenges towards  targeted delivery of cancer therapeutics. Nat. Commun.  9: 1-12.
[36] Attia M. F., Anton N., Wallyn J., Omran Z., Vandamme T. F., (2019), An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol.  71: 1185-1198.
[37] Dai Y., Xu C., Sun X., Chen X., (2017), Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem. Soc. Rev. 46: 3830-3852.
[38] Du B., Yu M., Zheng J., (2018), Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater. 3: 358-374.
[39] Nalwa H. S., (2014), A special issue on reviews in nanomedicine, drug delivery and vaccine development. J. Biomed. Nanotechnol. 10: 1635-1640.
[40] Zhai Y., Su J., Ran W., Zhang P., Yin Q., Zhang Z., Yu H., Li Y., (2017), Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics. 7: 2575-2581.
[41] Zhen Xu., Penghui Ch., Kanyi Pu., (2019), Recent advances in cell membrane–camouflaged nanoparticles for cancer phototherapy. Small. 15: 1804105-1804110.
[42] Ahmad A., Khan F., Mishra R. K., Khan R., (2019), Precision cancer nanotherapy: Evolving role of multifunctional nanoparticles for cancer active targeting. J. Med. Chem. 62: 10475-10496.
[43] Yoo J., Park C., Yi G., Lee D., Koo H., (2019), Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers. 11: 640-647.
[44] Sutradhar K. B., Amin M., (2014), Nanotechnology in cancer drug delivery and selective targeting. Int. Sch. Res. Notices.  2014: Article ID 939378.
[45] Mitra A. K., Agrahari V., Mandal A., Cholkar K., Natarajan C., Shah S., Joseph M., Trinh H. M., Vaishya R., Yang X., (2015),  Novel delivery approaches for cancer therapeutics. J. Cont. Rel. 219: 248-268.
[46] Liyanage P. Y., Hettiarachchi S. D., Zhou Y., Ouhtit A., Seven E. S., Oztan C. Y., Celik E., Leblanc R. M., (2019), Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim. Biophys. Acta. Rev. Can. 1871: 419-433.
[47] Ranjani S., Das R., Shariq Ahmed M., Lalnunmawii E., Senthilkumar N., Ruckmani K., Hemalatha S., (2020),  Myconanocolloids manipulate growth, biofilm formation and virulence genes in UTI causing E. coli. Inorg. Nano-Met. Chem. (In Press).
[48] Sai Nivetha S., Ranjani S., Hemalatha S., (2020), Synthesis and application of silver nanoparticles using Cissus quadrangularis.  Inorg. Nano-Met. Chem. (In Press).
 [49] Anitha S., Ranjani S., Hemalatha S., (2021), In silico Analysis of quercetin and its analogues against targeted Proteins. Biointer. Res. App. Chem. 11: 13695–13705.
[50] Jia Y., Omri A., Krishnan L., Mc Cluskie M. J., (2017),  Potential applications of nanoparticles in cancer immunotherapy. Hum. Vac. Immunother. 13: 63-74.
[51] Bazak R., Houri M., El Achy S., Kamel S., Refaat T., (2015), Cancer active targeting by nanoparticles: A comprehensive review of literature. J. Can. Res. Clin. Oncol. 141: 769-784.
[52] Wu F., Li X., Jiang B., Yan J., Zhang Z., Qin J., Yu W., Gao Z., (2018), Glycyrrhetinic acid functionalized  nanoparticles for drug delivery to liver cancer. J. Biomed. Nanotechnol. 14: 1837-1852.
[53] Rompicharla S. V. K., Kumari P., Bhatt H., Ghosh B., Biswas S., (2019), Biotin functionalized PEGylated poly (amidoamine) dendrimer conjugate for active targeting of paclitaxel in cancer. Int. J. Pharm . 557: 329-341.
[54] Duffy M. J., Harbeck N., Nap M., Molina R., Nicolini A., Senkus E., Cardoso F., (2017), Clinical use of biomarkers in breast cancer: Updated guidelines from the european group on tumor markers (EGTM). Eur. J. Can. 75: 284-298.
[55] Fernandes E., Freitas R., Ferreira D., Soares J., Azevedo R., Gaiteiro C., Peixoto A., Oliveira S., Cotton S., Relvas-Santos M., Afonso L. P., (2020), Nucleolin-Sle a glycoforms as E-Selectin ligands and potentially targetable biomarkers at the cell surface of gastric cancer cells. Cancers. 12: 861-867.
[56] Fernandes E., Ferreira D., Peixoto A., Freitas R., Relvas-Santos M., Palmeira C., Martins G., Barros A., Santos L. L., Sarmento B., Ferreira J. A., (2019), Glycoengineered nanoparticles enhance the delivery of 5-fluoroucil and paclitaxel to gastric cancer cells of high metastatic potential. Int. J. Pharm. 570: 118646-118651.
[57] Ruttala H. B., Ramasamy T., Madeshwaran T., Hiep T. T., Kandasamy U., Oh K.,Wang X., Toh T. B., Chow E. K. H., (2018), Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discov. Today.  23: 1043-1052.
[58] Gu M., Wang X., Toh T. B., Chow E. K. H., (2018), Applications of stimuli-responsive nanoscale drug delivery systems in translational research. Drug Discov. Today. 23: 1043-1052.
[59] El-Sawy H. S., Al-Abd A. M., Ahmed T. A., El-Say K. M., Torchilin V. P., (2018), Stimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: Past, present, and future perspectives. ACS Nano. 12: 10636-10664.
[60] Boedtkjer E., Pedersen S. F., (2020), The acidic tumor microenvironment as a driver of cancer. Annu. Rev. Physiol. 82: 103-126.
[61] Tian B., Liu S., Wu S., Lu W., Wang D., Jin L., Hu B., Li K., Wang Z., Quan Z., (2017), pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin. Col. Surf. B. Biointerfaces. 154: 287-296.
[62] Oei A. L., Vriend L. E. M., Krawczyk P. M., Horsman M. R., Franken N. A. P., Crezee J., (2017), Targeting therapy-resistant cancer stem cells by hyperthermia. Int. J. Hyperthermia. 33: 419-427.
[63] Liu Y., Crawford B. M., Vo-Dinh T., (2018), Gold nanoparticles-mediated photothermal therapy and immunotherapy. Immunother. 10: 1175-1188.
[64] Riley R. S., Day E. S., (2017), Gold nanoparticle mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 94: e1449.
[65] Shen S., Ding B., Zhang S., Qi X., Wang K., Tian J., Yan Y., Ge Y., Wu L., (2017), Near-infrared light-responsive nanoparticles with thermosensitive yolk-shell structure for multimodal imaging and chemo-photothermal therapy of tumor. Nanomed. 13: 1607-1616.
[66] Nosrati H., Mojtahedi A., Danafar H., Kheiri Manjili H., (2018), Enzymatic stimuli responsive methotrexate conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition. J. Biomed. Mater. Res. A. 106: 1646-1654.
[67] Wang Y., Deng Y., Luo H., Zhu A., Ke H., Yang H., Chen H., (2017),  Light-responsive nanoparticles for highly efficient cytoplasmic delivery of anticancer agents. ACS Nano. 11: 12134-12144.
[68] Guisasola E., Asín L., Beola L., de la Fuente J. M., Baeza A., Vallet-Regí M., (2018), Beyond traditional hyperthermia: In vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers. ACS Appl. Mater. Interfaces. 10: 12518-12525.
[70] Sau T. K., Biswas A., Ray P., (2018), Metal nanoparticles in nanomedicine: Advantages and scope. In S Thota., D. C. Crans (Ed.), Metal Nanoparticles: Synthesis and Applications in Pharmaceutical Sciences (pp.121). Weinheim, Germany: Wiley-VCH.
[71] Gurunathan S., Kang M. H., Qasim M., Kim J. H., (2018), Nanoparticle-mediated combination therapy: Two-in-one approach for cancer. Int. J. Mol. Sc. 19: 3264-3268.
[72] Sabiha Sulthana H. B., Ranjani S., Hemalatha S., (2020), Comparison of efficacy of nanoparticles synthesized from leaves and flowers of Russelia equisitiformis. Inorg. Nano-Met. Chem. (In press).                                     
[73] Tahira A., Khan M. S., Hemalatha S., (2020), Biosynthesis of silver nanoparticles via fungal cell filtrate and their antiquorum sensing against Pseudomonas aeruginosa. J. Environ. Chem. Eng. (In press).
[74] Meir R., Shamalov K., Sadan T., Motiei M., Yaari G., Cohen C. J., Popovtzer R., (2017), Fast image-guided stratification using anti-programmed death ligand 1 gold nanoparticles for cancer immunotherapy. ACS Nano. 11: 11127-11134.
[75] Coelho S. C., Reis D. P., Pereira, M. C., Coelho M. A., (2018), Gold nanoparticles for targeting varlitinib to human pancreatic cancer cells. Pharmac. 10: 91-96.
[76] Zhang X. F., Liu  Z. G., Shen W., Gurunathan S., (2016), Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17: 1534-1538.
[77] Akther T., Mathipi V., Kumar N. S., Davoodbasha M., Srinivasan H., (2019),  Fungal-mediated synthesis of pharmaceutically active silver nanoparticles and anticancer property against A549 cells through apoptosis. Environ. Sci. Pollut. Res. 26: 13649-13657.
[78] Ranjani S., Pradeep P., Vimalkumar U., Ramesh Kumar V., Hemalatha S., (2021), Pungent antiinfective nanocolloids manipulate growth, biofilm formation and CTX-M-15 gene expression in pathogens causing Vibriosis. Aqua. Inter. 29: 859-869.
[79] Rohini B., Akther T., Waseem M., Khan J., Kashif M., Hemalatha S., (2019), AgNPs from nigella sativa control breast cancer: An in vitro study. J. Environ. Path. Toxicol. Oncol. 38: 185-194.
[80] Ahmed M. S., Soundhararajan R., Akther T., Kashif M., Khan J., Waseem M., Srinivasan H., (2019), Biogenic AgNps synthesized via endophytic bacteria and its biological applications.  Environ. Sci. Pollut. Res. 26: 26939-26946.
[81] Al-Sheddi E. S., Farshori N. N., Al-Oqail M. M., Al-Massarani S. M., Saquib Q., Wahab R., Musarrat J., Al-Khedhairy A. A., Siddiqui M. A., (2018), Anticancer potential of green synthesized silver nanoparticles using extract of Nepeta  deflersiana against human cervical cancer cells (HeLA). Bioinorg. Chem. Appl. 2018: 9390784.
[82] Azizi M., Ghourchian H., Yazdian F., Bagherifam S., Bekhradnia S.,  Nyström B., (2017), Anti-cancerous effect of albumin coated silver nanoparticles on MDA-MB 231 human breast cancer cell line. Sci. Rep. 7: 5178-5186.
[83] Pedone D., Moglianetti M., De Luca E., Bardi G., Pompa P. P., (2017), Platinum nanoparticles in nanobiomedicine. Chem. Soc. Rev.  46: 4951-4975.
[84] Xia H., Li F., Hu X., Park W., Wang S., Jang Y., Du Y., Baik S., Cho S., Kang T., Kim DH., (2016), pH-sensitive Pt nanocluster assembly overcomes cisplatin resistance and heterogeneous stemness of hepatocellular carcinoma. ACS Central Sci. 2: 802-811.
[85]Shoshan M. S., Vonderach T., Hattendorf B., Wennemers H., (2019), Peptide coated platinum nanoparticles with selective toxicity against liver cancer cells. Angew. Chem. Int. Ed. Engl. 58: 4901-4905.
[86] Pugazhendhi A., Edison T. N. J. I., Karuppusamy I., Kathirvel B., (2018), Inorganic nanoparticles: A potential cancer therapy for human welfare. Int. J. Pharm. 539: 104-111.
[87] Arachchige M. P., Laha S. S., Naik A. R., Lewis K. T., Naik R., Jena B. P., (2017),  Functionalized nanoparticles enable tracking the rapid entry and release of doxorubicin in human pancreatic cancer cells. Micron. 92: 25-31.
[88] Abdelaziz H. M., Gaber M., Abd-Elwakil M. M., Mabrouk M. T., Elgohary M. M., Kamel N. M., Kabary D. M., Freag M. S., Samaha M. W., Mortada S. M., Elkhodairy K. A., (2018), Inhalable particulate drug delivery systems for lung cancer therapy: nanoparticles, microparticles, nanocomposites and nanoaggregates. J. Cont. Rel. 269: 374-392.
[89] Sharma H., Kumar K., Choudhary C., Mishra P. K., Vaidya B., (2016), Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug.  Artif. Cells Nanomed. Biotechnol. 44: 672-679.
[90] Hassan H. F. H., Mansour A. M., Abo Youssef A. M. H., Elsadek B. E., Messiha B. A. S., (2017),  Zinc oxide nanoparticles as a novel anticancer approach; in vitro and in vivo evidence. Clin. Exp. Pharmacol. Physiol. 44: 235-243.
[91] Ancona A., Dumontel B., Garino N., Demarco B., Chatzitheodoridou D., Fazzini W., Engelke H., Cauda V., (2018), Lipid-coated zinc oxide nanoparticles as innovative ROS-generators for photodynamic therapy in cancer cells. Nanomat. 8: 143-149.
[92] Boroumand Moghaddam A., Moniri M., Azizi S., Abdul Rahim R., Bin Ariff A., Navaderi M., Mohamad R., (2017),  Eco-friendly formulated zinc oxide nanoparticles: Induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. Genes. 8: 281-287.
[93] Masood F., (2016), Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mat. Sci. Eng. C. Mat. Biol. Appl. 60: 569-578.
[94] Wong H. L., Rauth A. M., Bendayan R., Manias J. L., Ramaswamy M., Liu Z., Erhan S.Z., Wu X. Y., (2006),  A new polymer–lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm. Res. 23: 1574-1585.
[95]  de Oliveira Pedro R., Hoffmann S., Pereira S., Goycoolea F. M., Schmitt C. C.,  Neumann M. G., (2018), Self-assembled amphiphilic chitosan nanoparticles for quercetin delivery to breast cancer cells. Eur. J. Pharm. Biopharm. 131: 203-210.
[96] Katiyar S. S., Muntimadugu E., Rafeeqi T. A., Domb A. J., Khan W., (2016), Co-delivery of rapamycin-and piperine-loaded polymeric nanoparticles for breast cancer treatment. Drug Deliv. 23: 2608-2616.
[97] Deshmukh A. S., Chauhan P. N., Noolvi M. N., Chaturvedi K., Ganguly K., Shukla S. S., Nadagouda M. N., Aminabhavi T. M., (2017), Polymeric micelles: Basic research to clinical practice. Int. J. pharm. 532: 249-268.
[98] Wan X., Beaudoin J. J., Vinod N., Min Y., Makita N., Bludau H., Jordan R., Wang A., Sokolsky M., Kabanov A. V., (2019), Co-delivery of paclitaxel and cisplatin in poly (2-oxazoline) polymeric micelles: Implications for drug loading, release, pharmacokinetics and outcome of ovarian and breast cancer treatments. Biomat. 192: 1-14.
[99] Oh W. K., Yoon H., Jang J., (2010), Size control of magnetic carbon nanoparticles for drug delivery. Biomat. 31: 1342-1348.
[100] Tu X., Wang L., Cao Y., Ma Y., Shen H., Zhang M., Zhang Z., (2016), Efficient cancer ablation by combined photothermal and enhanced chemo-therapy based on carbon nanoparticles/doxorubicin@ SiO2  nanocomposites. Carbon. 97: 35-44.
[101] Qin X. C., Guo Z. Y., Liu Z. M., Zhang W., Wan M. M., Yang B. W., (2013), Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy. J. Photochem. Photobiol. B. 120: 156-162.
[102] Chandra S., Das P., Bag S., Laha D., Pramanik P., (2011), Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale.  3: 1533-1540.
[103] Simon J., Flahaut E., Golzio M., (2019), Overview of carbon nanotubes for biomedical applications. Materials. 12: 624-629.
[104] Sobhani Z., Dinarvand R., Atyabi F., Ghahremani M.,  Adeli M., (2011), Increased paclitaxel cytotoxicity against cancer cell lines using a novel functionalized carbon nanotube. Int. J. Nanomed. 6: 705-709.
[105] Akbarzadeh A., Rezaei-Sadabady R., Davaran  S., Joo S. W., Zarghami N., Hanifehpour Y., Samiei M.,  Kouhi M., Nejati-Koshki K., (2013),  Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 8: 102-109.
[106] Voinea M., Simionescu M., (2002), Designing of ‘intelligent’ liposomes for efficient delivery of drugs. J. Cell Mol. Med. 6: 465-474.
[107] Deshpande P. P., Biswas S.,  Torchilin V. P., (2013), Current trends in the use of liposomes for tumor targeting. Nanomed. 8: 1509-1528.
[108] Riehemann K., Schneider S. W., Luger T. A., Godin B., Ferrari M., Fuchs H., (2009), Nanomedicine—challenge and perspectives. Angew. Chem. Int. Ed. Engl. 48: 872-897.
[109] Kang X. J., Wang H. Y., Peng H. G., Chen B. F., Zhang W. Y., Wu A. H.,  Xu Q., Huang Y. Z., (2017), Codelivery of dihydroartemisinin and doxorubicin in mannosylated liposomes for drug-resistant colon cancer therapy. Acta. Pharmacol. Sin. 38: 885-896.
[110] Lakkadwala S., dos Santos Rodrigues B., Sun C., Singh J., (2019), Dual functionalized liposomes for efficient co-delivery of anti-cancer chemotherapeutics for the treatment of glioblastoma. J. Cont. Rel. 307: 247-260.
[111] Watermann A., Brieger J., (2017), Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomat. 7: 189-196.
[112] Meka A. K., Jenkins L. J., Dàvalos-Salas M., Pujara N., Wong K. Y., Kumeria T., Mariadason J.M., Popat A., (2018), Enhanced solubility, permeability and anticancer activity of vorinostat using tailored mesoporous silica nanoparticles. Pharmaceut. 10: 283-291.
[113] Pan G., Jia T. T., Huang Q. X., Qiu Y. Y., Xu J., Yin P. H., Liu T., (2017), Mesoporous silica nanoparticles (MSNs)-based organic/inorganic hybrid nanocarriers loading 5-Fluorouracil for the treatment of colon cancer with improved anticancer efficacy. Col. Surf. B. Biointer. 159: 375-385.
[114] Xin Y., Huang M., Guo W. W., Huang Q., Zhen Zhang L., Jiang G., (2017), Nano-based delivery of RNAi in cancer therapy. Mol. Can. 16: 1-9.
[115] Kokkinos J., Ignacio R. M., Sharbeen G., Boyer C., Gonzales-Aloy E., Goldstein D., McCarroll J. A., Phillips P. A., (2020), Australian pancreatic cancer genome initiative targeting the undruggable in pancreatic cancer using nano-based gene silencing drugs. Biomat. 240: 119742-119748.
[116] Yang W. Q., Zhang Y., (2012), RNAi-mediated gene silencing in cancer therapy. Expert. Opin. Biol. Ther. 12: 1495-1504.
[117] Padayachee J., Daniels A., Balgobind A., Ariatti M., Singh M., (2020), HER-2/neu and MYC gene silencing in breast cancer: therapeutic potential and advancement in nonviral nanocarrier systems. Nanomed. 15: 1437-1452.
[118] Li Y., Ding J., Xu X., Shi R., Saw P. E., Wang J., Shi J., (2020), Dual hypoxia-targeting rnai nanomedicine for precision cancer therapy. Nano Let. 20: 4857-4863.
[119] Wang C., Shi X., Song H., Zhang C., Wang X., Huang P., Dong A., Zhang Y.,  Kong D., Wang W., (2021), Polymer-lipid hybrid nanovesicle-enabled combination of immunogenic chemotherapy and RNAi-mediated PD-L1 knockdown elicits antitumor immunity against melanoma. Biomat. 268: 120579-120585.
[120] Shaabani E., Sharifiaghdam M., De Keersmaecker H., De Rycke R., De Smedt S., Faridi-Majidi R., Braeckmans K., Fraire J. C., (2021), Layer by layer assembled chitosan-coated gold nanoparticles for enhanced siRNA delivery and silencing. Int. J.  Mol. Sci. 22: 831-836.
[121] Shen S., Liu M., Li T., Lin S., Mo R., (2017), Recent progress in nanomedicine-based combination cancer  therapy using a site-specific co-delivery strategy. Biomater. Sci. 5: 1367-1381.
[122] Wang H., Wu J., Xie K., Fang T., Chen C., Xie H., Zhou L., Zheng S., (2017), Precise engineering of prodrug cocktails into single polymeric nanoparticles for combination cancer therapy: Extended and sequentially controllable drug release. ACS Appl. Mater. Interf.  9: 10567-10576.
[123] Rawal S., Patel M. M., (2019), Threatening cancer with nanoparticle aided combination oncotherapy. J. Cont. Rel. 301: 76-109.
[124] Guo X. L., Kang X. X., Wang Y. Q., Zhang X. J., Li C. J., Liu Y.,  Du L. B., (2019), Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy. Acta. Biomater.  84: 367-377.
[125] Batra H., Pawar S., Bahl D., (2019), Curcumin in combination with anti-cancer drugs: A nanomedicine review. Pharmacol. Res. 139: 91-105.
[126] Xiao B., Ma L., Merlin D., (2017), Nanoparticle-mediated co-delivery of chemotherapeutic agent and siRNA for combination cancer therapy. Exp. Opin. Drug Deliv. 14: 65-73.
[127] Bear A. S., Kennedy L. C., Young J. K., Perna S. K., Almeida J. P. M., Lin A. Y.,  Eckels P.C., Drezek R.A., Foster A. E., (2013), Elimination of metastatic melanoma using gold nanoshell-enabled photothermal therapy and adoptive T cell transfer. PLoS One. 8: e69073.
[128] Zhang X., Li Y., Wei M., Liu C., Yu T., Yang J., (2019), Cetuximab-modified silica nanoparticle loaded with ICG for tumor-targeted combinational therapy of breast cancer. Drug Deliv. 26: 129-136.
[129] Mirrahimi M., Abed Z., Beik J., Shiri I., Dezfuli A. S., Mahabadi V. P., Kamrava S. K., Ghaznavi H., Shakeri-Zadeh A., (2019), A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy. Pharmacol. Res. 143: 178-185.
[130] Li R., Liu B., Gao J., (2017), The application of nanoparticles in diagnosis and theranostics of gastric cancer. Can. Lett. 386: 123-130.
[131] Madamsetty V. S., Mukherjee A., Mukherjee S., (2019), Recent trends of the bio-inspired nanoparticles in cancer theranostics. Front. Pharmacol. 10: 1264-1268.
[132] Key J., Park K., (2017), Multicomponent, tumor-homing chitosan nanoparticles for cancer imaging and therapy. Int. J. Mol. Sci. 18: 594-598.
[133] Wang Y. W., Kang S., Khan A., Bao P. Q.,  Liu J. T., (2015),  In vivo multiplexed molecular imaging of esophageal cancer via spectral endoscopy of topically applied SERS nanoparticles. Biomed. Opt. Express.  6: 3714-3723.
[134] Yi X., Wang F., Qin W., Yang X., Yuan J., (2014), Near-infrared fluorescent probes in cancer imaging and therapy: An emerging field. Int. J. Nanomed. 9: 1347-1352.
[135] Li J., Chen K., Liu H., Cheng K., Yang M., Zhang J., Cheng J. D., Zhang Y.,  Cheng Z., (2012), Activatable near-infrared fluorescent probe for in vivo imaging of fibroblast activation protein-alpha. Bioconj. Chem. 23: 1704-1711.
[136] Nam T., Park S., Lee S. Y., Park K., Choi K., Song I. C., Han M. H., Leary J. J., Yuk S. A., Kwon I. C., Kim K., (2010), Tumor targeting chitosan nanoparticles for dual-modality optical/MR cancer imaging.  Bioconj. Chem. 21: 578-582.
[137] Weber J., Beard P. C., Bohndiek S. E., (2016), Contrast agents for molecular photoacoustic imaging. Nat. Meth. 13: 639-650.
[138] He J., Li C., Ding L., Huang Y., Yin X., Zhang J., Zhang J., Yao C., Liang M., Pirraco R. P., (2019), Tumor targeting strategies of smart fluorescent nanoparticles and their applications in cancer diagnosis and treatment. Adv. Mater. 31: 1902409.
[139] Li R., He Y., Zhang S., Qin J., Wang J., (2018), Cell membrane-based nanoparticles: A new biomimetic platform for tumor diagnosis and treatment. Acta. Pharm. Sin. B.  8: 14-22.
[140] Rao L., Bu L. L., Meng Q. F., Cai B., Deng W. W., Li A., Li K., Guo S. S., Zhang W. F., Liu W., Sun Z. J., (2017),  Antitumor platelet-mimicking magnetic nanoparticles. Adv. Funct. Mater. 27: 1604774.
[141] Wang H., Li X., Tse B. W. C., Yang H., Thorling C. A., Liu Y., Touraud M., Chouane J. B., Liu X., Roberts M. S., (2018), Indocyanine green-incorporating nanoparticles for cancer theranostics. Theranostics.  8: 1227-1233.
[142] Schaafsma B. E., Mieog J. S. D., Hutteman M., Van der Vorst J. R., Kuppen P. J., Löwik C. W., Frangioni J. V., Van de Velde C. J., Vahrmeijer A. L., (2011), The clinical use of indocyanine green as a near infrared fluorescent contrast agent for image guided oncologic surgery. J. Surg. Oncol. 104: 323-332.
[143] Ranjani S., Ahmed M., Ali D., Ramachandran C.,  Kumar N., Hemalatha S., (2020), Toxicity assessment of silver nanoparticles synthesized using endophytic fungi against nosacomial infection. Inorg. Nano-Met. Chem. (In Press).
[144] Rahman L., Jacobsen N. R., Aziz S. A., Wu D., Williams, A., Yauk, C. L., White P., Wallin H., Vogel U., Halappanavar S., (2017), Multi-walled carbon nanotube-induced genotoxic, inflammatory and pro-fibrotic responses in mice: Investigating the mechanisms of pulmonary carcinogenesis. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 823: 28-44.
[145] Kumar V., Sharma N.,  Maitra S. S., (2017), In vitro and in vivo toxicity assessment of nanoparticles. Int. Nano Lett. 7: 243-256.
[146] Musetti S., Huang L., (2018), Nanoparticle-mediated remodeling of the tumor microenvironment to enhance immunotherapy. ACS Nano. 12: 11740-11755.
[147] Van der Meel R., Lammers T., Hennink W. E., (2017), Cancer nanomedicines: Oversold or underappreciated? Exp. Opin. Drug Deliv. 1-5.
[148] Siddique S., Alexander A., Yadav P., Agrawal M., Shehata A. M., Shaker M. A., Rahman S. A. U., Abdul M. I. M., Shaker M. A., (2019),  Nanomedicines: Challenges and perspectives for future nanotechnology in the healthcare system. Sci. Res. Essays. 14: 32-38.
[149] Patra J. K., Das G., Fraceto L. F., Campos E. V. R., del Pilar Rodriguez-Torres M., Acosta-Torres L. S., Diaz-Torres L. A., Grillo R., Swamy M. K., Sharma S., (2018), Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotech. 16: 71-76.
[150] Salvioni L., Rizzuto M. A., Bertolini J. A., Pandolfi L., Colombo M.,  Prosperi D., (2019),  Thirty years of cancer nanomedicine: Success, frustration, and hope. Cancers. 11: 1855-1859.
[151] Day C. P., Merlino G., Van Dyke T., (2015), Preclinical mouse cancer models: A maze of opportunities and challenges. Cell.163: 39-53.