Experimental and theoretical electronic absorption spectra, optical, photoelectrical characterizations of 1, 2, 3-Thiazaphosphinine and 1, 2-Azaphospholes bearing a chromone ring: Solvatochromic effect and TD/DFT approach

Document Type : Reasearch Paper


1 Department of Chemistry, Faculty of Education, Ain Shams University, Roxy, 11711, Cairo, Egypt.

2 Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia.


Geometry, global energetic and dipole moment of the studied structures 1-4 in the ground state are calculated using the DFT/B3LYB/6-311++G (d,p) level of theory.  It has been uncovered that compounds containing 1, 2, 3-thiazaphosphinine and 1, 2-azaphospholes bearing a Chromone ring structure displays noteworthy biological properties. The studied compounds 1-4 are non-planar, as indicated from the dihedral angles. Using frontier molecular orbital (FMO) analysis, various spectroscopic and quantum chemical parameters are evaluated. Besides, absorption energies, oscillator strength, and electronic transitions of 1, 2, 3-thiazaphosphinine and 1, 2-azaphospholes 1-4 molecules have been derived at TD-DFT/CAM-B3LYP/6-311++G (d, p) computations utilizing a PCM and measured in different solvents polar and non-polar experimentally in Uv-Vis spectra. The second-order perturbation interactions between donor and acceptor MOs of the ground state and the natural bond orbital (NBO) analysis show a localization and delocalization of electron density, intermolecular Charge Transfer CT character of n-π*, π-π* transitions. The calculated at the same level of theory which NLO, α, Δα and first order β were showed promising optical properties. For the understanding of reactivity points, the molecular electrostatic potential surfaces (MEPS) plots have been computed. All the calculations have been performed in the gas phase.


[1]               Hassanin N. M., Ali T. E., El-Shaaer H. M., Hassan M. M., (2019), Reaction of 2-Imino-2H ‐chromene‐3‐carboxamide with Phosphorus isothiocyanates: First synthesis of novel chromeno [2, 3-d ] pyrimidinyl and Bis(chromeno [2, 3-d ] pyrimidinyl) phosphines and Chromeno[2′, 3′ : 4, 5]pyrimido[2, 1d ][1, 3, 5, 2] triazaphosphinine. J. Heterocycl. Chem. 56: 1646-1650.
[2]               Guanghui An, Cole S., Guigen Li, (2015), N-Phosphonyl/phosphinyl imines and group-assisted purification (GAP) chemistry/technology. J. Org. Biomol. Chem. 13: 1600-1617.
[3]               Long N., Cai X. J., Song B. A., Yang S., Chen Z., Bhadury P. S., Lu D. Y., Jin L. H., Xue W., (2008), Synthesis and antiviral activities of cyanoacrylate derivatives containing an alpha-aminophosphonate moiety. J. Agric. Food. 56: 5242-5246.
[4]               Wang Q., Zhu M., Zhu R., Lu L., Yuan C., Xing S., Fu X., Mei Y., Hang Q., (2012), Eur Exploration of α-Aminophosphonate N-derivatives as novel, potent and selective inhibitors of protein tyrosine phosphatases. J. Med. Chem. 49: 354-364.
[5]               Dake S., Raut, A., Kharat D. S., Mhaske K. R., Deshmukh R. S., Pawar S. M., (2011), Synthesis of novel a-Aminophosphonate derivatives, biological evaluation as potent antiproliferative agents and molecular docking. Bioorg. Med. Chem. Lett. 21: 2527-2532.
[6]               Abdou W. M., Barghash R. F., Bekheit M. S., (2012), One-pot three-component synthesis of novel diethyl ((2-oxo-1, 2-dihydroquinolin-3-yl) (arylamino) methyl) phosphonate as potential anticancer agents. J. Arch. Pharm. Chem. Life Sci. 345: 884-895.
[7]               Akbas H., Okumus A., Kılıc Z., Hokelek T., Celik Z. B., (2013), Phosphorus-nitrogen compounds part 27. syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing secondary amino and pendant (4-fluorobenzyl) spiro groups. Eur. J. Med. Chem. 70: 294-307.
[8]               Chang C., Wu C., Kuo S., Wang J., Teng C., (2002), Natural products as sources of new drugs from 1981 to 2014. Chin. Pharm. J. 54: 127-138.
[9]               Nohara A., Ishiguro T., Ukawa K., Sugihara H., Maki Y., Sanno Y., (1985), Studies on antianaphylactic agents, synthesis of antiallergic 5-Oxo-5H-[1]benzopyrano[2, 3-b]pyridines. J. Med. Chem. 28: 559-568.
[10]           Lee S. K., Chae S. M., Yi K. Y., Kim N. J., Oh C. H., (2005), Synthesis and photoelectrical characterizations of ECPPQT for optoelectronic application. Bull. Korean Chem. Soc. 26: 619-629.
[11]           Ukawa K., Ishiguro T., Kurik H., Nohara A., (1985), ChemInform abstract: Synthesis of heteroannulated chromeno[2, 3-b] pyridines: DBU catalyzed reactions of 2-Amino-6-methylchromone-3-carboxaldehyde with some heterocyclic enols and enamines. Chem. Pharm. Bull. 33: 4432-4442.
[12]           Huang W., Ding Y., Miao Y., Liu M.-Z., Li Y., Yang G.-F., (2009), Cytotoxic activity evaluation and QSAR study of chromene-based chalcones. Eur. J. Med. Chem. 44: 3687-3696.
[13]           Larget R., Lockhart B., Renard P., Largeron M., (2000), Amino and nitro derivatives of 5, 7-dimethoxyflavone from Kaempferia parviflora and cytotoxicity against KB cell line. Bioorg. Med. Chem. Lett. 10: 835-838.
[14]           Ungwitayatorn J., Samee W., (2004), Pimthon, In vitro cytotoxicity of hydrazones, pyrazoles, pyrazolo-pyrimidines, and pyrazolo-pyridine synthesized from 6-substituted 3-formylchromones. J. Mol. Struct. 99: 689-699.
[15]           Ishakava T., Oku Y., Tanaka T., Kumamoto T., (1999), Yttrium oxide (Y2O3): Efficient and green catalysis for the synthesis of chromeno [2, 3-b]quinolinedione. Tetrahed. Lett. 40: 3777-3787.
[16]           Göker H., Boykin D. W., Yıldız S., (2005), Facile ionic liquid-mediated, microwave assisted green synthesis, and antioxidant studies of novel indolin-2-one annulated spirochromanone conjugates. Bioorg. Med. Chem. 13: 1707-1718.
[17]           Deng Y., Lee J. P., Ramamonjy, M. T., Synder J. K., Des Etages S. A., Kanada D., Synder M. P., Turner C. J., (2000), Synthesis and characterization of new chromeno[2, 3-b]pyridines via the Friedländer reactions of 8-allyl-2-amino-4-oxo-4H-chromene-3-carboxaldehyde. J. Nat. Prod. 63: 1082-1091.
[18]           Pietta P. J., (2000), Flavonoids as antioxidants. J. Nat. Prod. 63: 1035-1042.
[19]           Mazzei M., Sottofattori E., Dondero R., Ibrahim M., Melloni E., Michetti M., (1999), Synthesis of some novel heteroannelated chromones by basic rearrangement of 6-methylchromone-3-carbonitrile. Farmaco. 53: 452-462.
[20]           Ali T. E., Hassan M. M., (2018), Facile synthesis of novel 6-methyl-5-phenyl-2-sulfido-1, 2, 3, 5-tetrahydro-4H[1, 2] oxazolo [4′, 5′ : 5, 6] pyrano[2, 3-d][1, 3, 2] diazaphosphinines. Res. Chem. Intermed. 44: 173-181.
[21]           Mirali M., Jafariazar Z., Mirzaei M., (2021), Loading tacrine alzheimer's drug at the Carbon nanotube: DFT approach. Lab-in-Silico. 2: 3-8.
[22]           Mirzaei M., (2020), Science and engineering in silico. Adv. J. Sci. Eng. 1: 1-2.
[23]           Faramarzi R., Falahati M., Mirzaei M., (2020), Interactions of fluorouracil by CNT and BNNT: DFT analyses. Adv. J. Sci. Eng. 1: 62-66.
[24]           Kun H., Osman Murat O., Mirzaei M., (2020), Lithium adsorption at the C20 fullerene-like cage: DFT approach. Adv. J. Sci. Eng. 1: 74-79.
[25]           Frisch M., Trucks J. G. W., Schlegel H. B., Scuseria G. E., (2009), Gaussian, Inc., Wallingford CT.
[26]           Becke A. D., (1993), A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98: 1372-1376.
[27]           Lee C., Yang W., Parr R. G., (1988), Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. Condens. Matter. 37: 785-789.
[28]           Stefanov B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., A. Al-Laham M., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C., Pople J. A., (2003), Gaussian, Inc., Pittsburgh PA.
[29]           Dennington R., Keith T., Millam J. Semichem Inc., (2009), GaussView, Version 5, Shawnee Mission KS.
[30]           Miehlich B., Savin A., Stolt H., Preuss H., (1989), Results obtained with the correlation energy density functional of becke and lee, yang and parr. Chem. Phys. Lett. 157: 200-206.
[31]           Avci D., (2011), Second and third-order nonlinear optical properties and molecular parameters of azo chromophores: Semiempirical analysis. Spectrochim. Acta A. 82: 37-43.
[32]           Avci D., Başoğlu A., Atalay Y., (2010), Ab initio HF and DFT calculations on an organic non-linear optical material. Struct. Chem. 21: 213-219.
[33]           Avci D., Cömert H., Atalay Y., (2008), Ab initio hartree-fock calculations on linear and second-order nonlinear optical properties of new acridine-benzothiazolylamine chromophores. J. Mol. Mod. 14: 161-169.
[34]           Pearson R. G., (1986), Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Nat. Acad. Sci. 83: 8440-8441.
[35]           Chandra A. K., Uchimara T., (2001), Hardness Profile: A critical study. J. Phys. Chem. A. 105: 3578-3582.
[36]           Matecki J. G., (2010), Phosphoinositides: Tiny lipids with giant impact on cell regulation. Trans. Met. Chem. 35: 801-811.
[37]           Yanai T., Tew D., Handy N., (2004), A new hybrid exchange–correlation functional was using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393: 51-57.
[38]           Chocholoušová J., Špirko V., Hobza P., (2004), First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–H…O and improper blue-shifted C–H…O hydrogen bonds. Phys. Chem. 6: 37-41.
[39]           Szafran M., Komasa A., Bartoszak-Adamska E., (2007), Crystal and molecular structure of 4-carboxypiperidinium chloride (4-piperidinecarboxylic acid hydrochloride). J. Mol. Struct. 827: 101-107.
[40]           Macoonald J. N., Mackay S. A., Tyler J. K., Cox A. P., Ewart I. C., (1981), Microwave spectra, structures and dipole moments of 4H-pyran-4-one and its sulphur analogues. J. Chem. Soc. Farady. Trans. II. 77: 79-99.
[41]           Sajan D. Y., Erdogdu R., Reshmy O., Dereli K., Thomas K., Hubert I., (2011), Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole moment derivatives. Spectrochim. Acta Part A. 82: 118-128.
[42]           Reed A. R., Weinstock R. B., Weinhold F., (1985), Natural population analysis. J. Chem. Phys. 83: 735-742.
[43]           Natorajan S., Shanmugam G., Martin S. A., (2008), Nonlinear optical properties of organic molecules and crystals. Cryst. Res. Technal. 43: 561-569.
[44]           Cheng L. T., Tam W., Stevenson S. H., Meredith G. R., Rikken G., Marder S. R., (1991), Electric field induced second harmonic generation with and without fringes. J. Phys. Chem. 95: 10631-10640.
[45]           Kaatz P., Donley E. A., Shelton D. P.,  (1998), Analysis of nonlinear optical properties in donor–acceptor materials. J. Chem. Phys. 108: 849-858.
[46]           Gnanasambandan T., Gunasekaran S., Seshadri S., (2014), Experimental and theoretical study of p-nitroacetanilide. Spectrochim. Acta Part A: Molec. Biomolecul. Spec. 117: 557-567.
[47]           Sscrocco E., Tomasi J., (1978), Electronic molecular structure, reactivity and intermolecular forces: An euristic interpretation by means of electrostatic molecular potentials. Adv. Quant.Chem. 11: 115-193.
[48]           Politzer P., Murray J. S., (2002), The fundamental nature and role of the electrostatic potential in atoms and molecules. Theor. Chem. Acc. 108: 134-142.
[49]           Sajan D., Joseph L., Vijayan N., Karabacak M., (2011), Natural bond orbital analysis, electronic structure, non-linear properties and vibrational spectral analysis of l-histidinium bromide monohydrate: A density functional theory. Spectrochim. Acta A. 81: 85-98.
[50]           Hemalatha K. S. K., Rukmani N., Suriyamurthy B. M., (2014), Nagabhushana, scheelite-type MWO4 (M = Ca, Sr, and Ba) nanophosphors: Facile synthesis, structural characterization, photoluminescence, and photocatalytic properties. Mater. Res. Bull. 51: 438-448.