Biogenic synthesis and characterization of Silver nanoparticles from seed extract of Spondia mombins and screening of its antibacterial activity

Document Type : Reasearch Paper


1 Department of Microbiology Babcock University PMB 21244 Ikeja Lagos Nigeria.

2 Department of Chemical Sciences Redeemer's University Gbogan-Osogbo Road PMB 230 Ede 232001.

3 Department of Maternal and Child Health Babcock University PMB 21244 Ikeja Lagos Nigeria.

4 Department of Pure and Applied Biology Ladoke Akintola University of Technology PMB 4000 Ogbomoso Nigeria.

5 Department of Basic Sciences Babcock University PMB 21244 Ikeja Lagos Nigeria.


The seed extract of Spondia mombins was used in the biofabrication of silver nanoparticles (AgNPs) in this study. The biosynthesized AgNPs was characterised using UV-Vis Spectroscopy, FTIR, FESEM, TEM, XRD and EDX. The antimicrobial efficacy of the synthetized AgNPs was evaluated against certain pathogens. The absorption spectrum peaked at 425 nm when the UV analysis was carried out, with a large peak of 3000 to 3800 cm−1 indicating different functional groups on the AgNPs surface when the FTIR analysis was conducted. An examination of FESEM and TEM showed a number of spherical particle structures ranging from 10-50 nm. XRD analysis also confirmed this size range. The AgNPs synthesized inhibited growth of the microorganisms used in this study. This study demonstrates that Spondia mombins’s seed extract has biomolecules that helped to bio reduce and stabilize the AgNPs synthesized, hence confirming the possibility of using Spondia mombins seeds in AgNPs synthesis.


1. Yokoma K., Welchons D. R., (2017), Nanoparticles. Nanotechnol. 18: 105101-105107.
2. Yoshida J., Kobayashi T., (1999), Intracellular hyperthermia for cancer using magnetite cationic liposomes. J. Magn. Magn. Mater. 194: 176-184.
3. Edelstein R. L., Tamanaha C. R., Sheehan P. E., Miller M. M., Baselt D. R., Whitman L. J., Colton R. J., (2000), The BARC biosensor applied to the detection of biological warfare agents. Biosens. Bioelectron. 14: 805-813.
4. Nam J. M., Thaxton C. C., Mirkin C. A., (2003), Nanoparticles-based bio-bar codes for the ultrasensitive detection of proteins. Science. 301: 1884-1886.
5. Mahtab R., Rogers J. P., Murphy C. J., (1995), Protein-sized quantum dot luminescence can distinguish between "straight", "bent", and "kinked" oligonucleotides. J. Am. Chem. Soc. 117: 9099-9100.
6. Molday R. S., MacKenzie D., (1982), Immunospecific ferromagnetic iron dextran reagents for the labeling and magnetic separation of cells. J. Immunol. Methods. 52: 353-367.
7. Cao X., Cheng C., Ma Y. L., Zhao C. S., (2014), Preparation of silver nanoparticles with antimicrobial activities and the researches of their biocompatibilities. J. Mater. Sci. 21: 2861–2868.
8. Sharma V. K., Yngard R. A., Lin Y., (2017), Silver nanoparticles: Green synthesis and their antimicrobial activities. Adv. Colloid and Interf. Sci. 145: 83-96.
9. Rajesh W. R., Niranjan S. K., Jaya R. L., Vijay D. M., Sahebrao B. K., (2010), Extracellular synthesis of silver nanoparticles using dried leaves of Pongamia pinnata (L) pierre. Nano-Micro Lett. 2: 106-113.
10. Chopade B. A, Singh R., Wagh P., Wadhwani S., Gaidhani S., Kumbhar A., (2013), Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticusand their enhanced antibacterial activity when combined with antibiotics. Int. J. Nanomedic. 8: 4277-4283.
11. Shaligram N. S, Bule M., Bhambure R., Singhal R. S., Singh S. K., Szakacs G., (2009), Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem. 44: 939-943.
12. Kumar V., Yadav S. K., (2009), Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol: Int. Res. Proc. Environ. Clean Technol. 84: 151-157.
13. Mitchell J. D., Daly D. C., (2015), A revision of Spondias L. (Anacardiaceae) in the neotropics.  PhytoKeys. 55: 1–92.
14. Toure Alassane G., Oussou N'guessan Jean-Baptiste K., Diby Yao Bernard K., AngouePaul Y., (2018), Toxicity assessment of an aqueous extract of the stem bark of spondias mombin (anacardiaceae) in wistar albino rats. Int. J. Current Microbiol. Appl. Sci. 7: 3625-3635.
15. Abiodun O., Nnoruka M., Tijani R., (2020), Phytochemical constituents, antioxidant activity and toxicity assessment of the seed of spondias mombin L. (Anacardiaceae). Turk. J. Pharmac. Sci. 17: 343-348.
16. Brito S., Barbosa I., de Almeida C., de Medeiros J., Silva Neto J., Rolim L., da Silva T., Ximenes R., Menezes I., Caldas G., Wanderley A., (2018), Evaluation of gastroprotective and ulcer healing activities of yellow mombin juice from Spondias mombin L. PLOS ONE. 13: e0201561-e0201566.
17. Nworu C., Akah P., Okoye F., Toukam D., Udeh J., Esimone C., (2011), The leaf extract of Spondias mombinL. displays an anti-inflammatory effect and suppresses inducible formation of tumor necrosis factor-α and nitric oxide (NO). J. Immunotoxicol. 8: 10-16.
18. Ademola I., Fagbemi B., Idowu S., (2005), Anthelmintic activity of extracts of spondias mombin against gastrointestinal nematodes of sheep: Studies in vitro and in vivo. Tropic. Animal Health Produc. 37: 223-235.
19. Usunobun U., Okolie P. N., Eze G. I., (2015), Effect of Vernonia amygdalina on some biochemical indices in dimethylnitrosamine (DMN)-induced liver injury in rats. Int. J. Animal Biology. 1: 99-105.
20. Sofowora L., (2013), Medicinal plants and Traditional medicine in Africa. Spectrum Books Ltd, Ibadan, Nigeria: Pp 289-291.
21. Azeez M. A., Agbaje L., Tesleem B. A., Taofeek A. Y., Akeem A., Iyabo C. O., Lorika S. B, (2016), Biomedical applications of cocoa bean extract-mediated silver nanoparticles as antimicrobial, larvicidal and anticoagulant agents. J. Nanotechnol. 16:1051-1052.
22. Aina A. D., Owolo O., Agbaje L., Aina F. O., Hakeem A. S., Adeoye-Isijola M., Okon V., Asafa T., Elegbede J. A., Olukanni O. D., (2019), Biomedicala of Chasmanthera dependens stem extract mediated silver nanoparticles as antimicrobial, antioxidant, anticoagulant, thrombolytic and Larvicidal agents. Karbala Int. J. Modern Sci. 5: 71 – 80.
23. Zulfiqar H., Zafar A., Rasheed M., Ali Z., Mehmood K., Mazher A., Hasan M., Mahmood N., (2019), Synthesis of silver nanoparticles using Fagonia cretica and their antimicrobial activities. Nanoscale Adv. 1: 1707-1713.
24. Lateef A., Azeez M. A., Asafa T. B., Yekeen T. A., Akinboro A., Oladipo I. C., Azeez L., Ojo S. A., Gueguim-Kana E. B., Beukes L. S., (2016), Cocoa pod husk extract-mediated biosynthesis of silver nanoparticles: its antimicrobial, antioxidant and larvicidal activities. J. Nanostruc. Chem. 6:159–169.
25. Deepak K. R., Madhurika B., (2015), Biosynthesis of silver nanoparticles by Ganoderma applanatum, evaluation of their antibacterial and antibiotic activity enhancing potential. World J. Pharmac. Pharmaceut. Sci. 4:1234-1247.
26. Bauer H., Paronetto F., Burns W. A., Einheber A., (1966), The enhancing effect of the microbial flora on macrophage function and the immune response: A study in germ free mice. J. Exp. Medic. 123: 1013-1024.
27. Vanaja M., Shanmugam R., Paulkumar K., Gnanajobitha G, (2013), Kinetic study on green synthesis of silver nanoparticles using Coleus aromaticus leaf extract. Adv.  Appl. Sci. Res.  4: 50-55.
28.  Krishnan Y., Simmel F. C., Bhatia D., Modi S., (2010), Structural DNA nanotechnology: From bases to bricks, from structure to function. J. Phys.  Chem.  Lett. 1: 1994-2005.
29.  Bar H., Bhui D., Sahoo G., Sarkar P., De S., Misra A., (2009), Green synthesis of Silver nanoparticles using latex of Jatropha curcas. Coll.  Surf.  A: Physicochem.  Eng. Aspec. 339:134-139.
30.  Aina A. D., Owolo O., Ginikachukwu O.,   Aina F. O., Majolagbe O. N., Olukanni O. D., Stephen M. C., Adewumi A. G, (2018),  Biosynthesis of silver nanoparticles using almond plant leaf extract and their antibacterial activity. Int.  J.  Eng. Sci.  Comp. 8: 19227- 19231.
31. Megiel E., Sadegh H., Ali G. A. M., Gupta V. K., Makhlouf, H. A. S., Shahryari-ghoshekandi R., Nadagouda M. N., Sillanpa A, (2017), The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J . Nanostruc. Chem.  7: 1-14.
32. Femi-Adepoju G. A., Dada A. O., Otun K. O., Adepoju A. O., Fatoba O. P., (2019), Green synthesis of silver nanoparticles using terrestrial fern (Gleichenia pectinata (willd.) C..Presl.): Characterization and antimicrobial studies. Heliyon. 5: e01543-e01551.
33. Gopalakrishnan D., Damien D., Shaijumon M. M., (2014), MoS2 quantum dot-interspersed exfoliated MoS2 nanosheets. ACS Nano. 8: 5297-5303.
34. Taghavi-Fardood S., Ramazani A., Moradi S., (2017), Green synthesis of Ni-Cu-Mg ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for synthesis of polyhydroquinoline derivatives. J. Sol-Gel Sci.  Technol. 82: 432-439.
35. Ajitha B., Reddy Y. A. K., Reddy P. S., (2014), Biogenic nano-scale silver particles by Tephrosia purpurea leaf extract and their inborn antimicrobial activity. Spectrochim. Acta, Part A. 121: 164–172.
36. Karwa A. S., Gaikwad S., Rai M. K., (2011), Mycosynthesis of silver nanoparticles using Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W. Curt.:Fr) P. Karst. and their role as Antimicrobials and antibiotic activity enhancers. Int. J. Medic. Mushrooms. 13: 1-19.
37. Adelere I. A., Lateef A., Aboyeji D. O., Abdulsalam R., Adabara N. U., Bala J. D., (2017), Biosynthesis of silver nanoparticles using aqueous extract of Buchholzia coriacea (Wonderful Kola) seeds and their antimicrobial activities. Annals of Food Sci. Technol. 18: 671–679.
38. Satishkumar G., Gobinath G., Karpagam K., Hemamalini V., Premkumar K., Sivaramakrishna S., (2014), Phyto-synthesis of silver nanoscale particles using Morinda citifolia L. and Its inhibitory action against human pathogens. Colloids Surf. B: Biointerf. 95: 235-240.
39. Rao B., Tang R, (2017), Green synthesis of silver nanoparticles with antibacterial activities using aqueous Eriobotrya japonica leaf extract. Adv. Nat. Sci: Nanosc. Nanotechnol. 2017:015014-015019.
40. Jagtap U., Bapat V, (2012), Biosynthesis, characterization and antibacterial activity of silver nanoparticles by aqueous Annona squamosa L. leaf extract at room temperature. J. Plant Biochem. Biotechnol. 22: 434-440.
41. Haruta M., (2004), Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications. Cheminform. 35: 44-49.
42.       Amaladhas T. P., Sivagami S., Devi T. A., Ananthi N., Velammal S. P., (2012), Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia. Adv. Nat. Sci: Nanosci. Nanotechnol. 3: 045006-045010.
43.       Umadevi M., Shalini S., Bindhu M. R., (2012), Synthesis of silver nanoparticle using D. carota extract. Adv. Nat. Sci: Nanosci. Nanotechnol. 3: 6-11.
44.       Kouvaris P., Delimitis A., Zaspalis V., Papadopoulos D., Tsipas S., Michailidis N., (2012), Green synthesis and characterization of silver nanoparticles produced using Arbutus unedo leaf extract. Mater. Lett. 76: 18–20.
45. Xu Z., Zeng Q., Lu G., Yu A., (2006), Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 61: 1027-1040.
46. Eddy J., Poinern G., (2015), Biogenic synthesis of gold and silver nanoparticles using the leaf extract from Eucalyptus macrocarpaInt. J.  Sci. 1: 27-33.
47. Sathishkumar M., Sneha K., Yun Y., (2010), Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresourc. Technol. 101: 7958-7965.
48. Kanmani P., Rhim J., (2014), Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloids. 35: 644-652.
49. Priyadarshini S., Gopinath V., Priyadharsshini N. M., Ali D. M., Velusamy P., (2013), Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its application. Colloids and Surf. B: Biointerf. 102: 232-237.
50. Shankar S., Jaiswal L., Aparna R. S. L., Prasad V., (2014), Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater. Lett. 137: 75-78.
51. Salem W. M., Haridy M., Sayed W. F., Hassan N. H., (2014), Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus. Indus. Crops and Produc. 62: 228-234.
52. Augustine R., Kalarikkal N., Thomas S., (2014), A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study. Appl. Nanosc. 4: 809-818.
53. Morones J. R., Elechiguerra J. L., Camacho A., Ramirez J. T., (2015), The bactericidal effect of silver nanoparticles. Nanotechnol. 16: 2346-2353.
54. Pal S., Tak Y. K., Song J. M., (2017), Does the antibacterial activity of silver nanoparticles depend on the shape of thenanoparticles? A study of the gram-negative bacterium Escherichia coli. Appl.  Environ. Microbiol.  27: 1712-1720.
55. Feng Q. L., Wu J., Chen G. Q., Cui F. Z., Kim T. N., Kim J. O., (2015), A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomedic. Mater. Res. 52: 662–668.
56. Sondi I., Salopek-Sondi B., (2004), Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J.  Colloid Interf.  Sci. 275: 177-182.
57. Gurunathan S., (2019), Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. Arab. J. Chem. 12: 168-180.
58. Singh M. S., Prasad S. S., Gambhir I. S., (2018), Nanotechnology in medicine and antibacterial effect of silver nanoparticles. J.  Nanomater. Biostruc. 3: 115-122.
59. Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G., Galdiero M., (2015), Silver nanoparticles as potential antibacterial agents. Molecules. 20: 8856-8874.