Copper nanoparticles synthesized using Echinops sp. root extract for antimicrobial applications

Document Type : Reasearch Paper


Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P. O. Box 1888, Adama, Ethiopia.


Metallic nanoparticles synthesised via green synthetic route have been proved to be detrimental against pathogens. An attempt was made to synthesise copper nanoparticles (EcS-Cu NPs) using the root extract of Echinops sp., Ethiopian medicinal plant. The most advanced techniques were employed to characterize the NPs. The presence of absorbance maxima, λmax at 454 nm confirms the formation of EcS-Cu NPs. The role of biomolecules as capping agents for EcS-Cu NPs was authenticated by FT-IR spectra. The presence of a single weak peak in the XRD pattern of NPs confirmed amorphous nature of NPs. The purity of the NPs was corroborated by SEM-EDAX analysis. TEM-HRTEM-SAED analysis authenticated the presence of partially crystalline natured copper NPs with the appearance of weak concentric SAED rings. The EcS-Cu NPs showed significant synergistic antibacterial influence verses S. aureus, E. coli, P. aeruginosa, and E. aerogenes. The uppermost zone of inhibition of 13 mm was inscribed against S. aureus bacteria. EcS-Cu NPs exhibited better antibacterial activities against gram positive and gram negative bacteria.


[1]      Soleiman-Beigi Z. A., (2015), A review study on chemical properties and food indexes of mastic Oil compared with Olive, sunflower and canola oils. The Ilamian traditional uses of mastic. J. Ilam Univ. Medic. Sci. 21: 1–13.
[2]      Singha R., Golam Rasul M., Ghosh P., (2020), From the pet-benzene extract of Psidiumguajava and their biocidal activity. J. Medic. Chem. Sci. J. Homepage: Original Research Article Isolation of olean. 3: 15-19.
[3]      Jafari-sales A., Hossein-nezhad P., (2020), Antimicrobial effects of rosmarinus officinalis methanolic extract on Staphylococcus aureus , Bacillus cereus, Escherichia coli and Pseudomonas aeruginosa in laboratory conditions. J. Medic. Chem. Sci. 3: 103–108.
[4]      Usman A., Thoss V., Nur-e-alam M., (2019), A New flavonoid glycoside from Trichilia Emetica. J. Medic. Chem. Sci. 2: 144–150.
[5]      Ghandehari F., Fani M., Rezaee M., (2018), Biosynthesis of Iron Oxide nanoparticles by cytoplasmic extract of bacteria lactobacillus fermentum. J. Medic. Chem. Sci. 1: 28–30.
[6]      Powar N. S., Patel V., (2019), Cu Nanoparticle: Synthesis, characterization and application review article Cu nanoparticle. Chem. Methodolog. 3: 457–80.
[7]      Abdolvahab R. H., Reza M., Meymian Z., Soudmand N., (2020), Chemical methodologies characterization of ZnO, Cu and Mo composite thin films in different annealing temperatures. Chem. Methodolog. 4: 276–84.
[8]      Mohammad A., Imran M., (2019), Prospects of medicinal plants derived nutraceuticals: A re-emerging new era of medicine and health aid. Prog. Chem. Biochem. Res. 2: 150–169.
[9]      El-shahaby O. A., El-zayat M. M., Rabei R., Aldesuquy H. S., (2019), Phytochemical constituents, antioxidant activity and antimicrobial potential of Pulicaria incisa (lam.) DC as a folk medicinal plant. Prog. Chem. Biochem. Res. 2: 222–227.
[10]    Bulduk I., (2020), Determination of trace element levels in flowers and leaves of vicia faba by ICP-MS. Prog. Chem. Biochem. Res. 3: 221–228.
[11]    Park B. A. E. H. O., (2011), Dielectric properties of epitaxial Ba1−xSrxTiO3 films on MgO substrates. 4: 41–44.
[12]    Hagr T. E., Adam I. A., (2020), Phytochemical analysis, antibacterial and antioxidant activities of essential Oil from hibiscus sabdariffa ( L ) Seeds, (Sudanese Karkadi). Prog. Chem. Biochem. Res. 3: 194–201.
[13]    Aadesariya M. K., Ram V. R., Dave P. N., (2019), Investigation of phytochemicals in methanolic leaves extracts of Abutilon pannosum and Grewia tenax by Q-TOF LC/MS. Prog. Chem. Biochem. Res. 2: 13–19.
[14]    Tesfahuneygn G., Gebreegziabher G., (2019), Medicinal plants used in traditional medicine by ethiopians: A review. J. Genet. Genet. Eng. 4: 1–3.
[15]    Abera B., (2014), Medicinal plants used in traditional medicine by oromo people, ghimbi district, southwest ethiopia.  J. Ethnobiol. Ethnomedic.10: 53-59.
[16]    Ananda Murthy H. C., Prakash B. A., (2020), Current Research in Science and Technology. vol 4, ed D S Moon (Book Publisher International (a part of SCIENCEDOMAIN International)).
[17]    Sougata G., Maliyackal J., Chacko A. N., Harke S., P Gurav K. A., Joshi A., Dhepe A., Kulkarni S., Vaishali S., Shinde V., Singh P., Adersh A., Kaushik B., Narayan K., Jayesh B., Balu A. C., (2016), Nanomedicine & nanotechnology barleria prionitis leaf mediated synthesis of Silver and Gold. J. Nanomedic. Nanotechnol. 7: 14-19.
[18]    Ghosh S., Jagtap S., More P., Shete U. J., Maheshwari N. O., Rao S. J., Kitture R., Kale S., Bellare J., Patil S., Pal J. K., Chopade B. A., (2015), Dioscorea bulbifera mediated synthesis of novel Au core Ag shell nanoparticles with potent antibiofilm and antileishmanial activity. J. Nanomater. 2015: 1–12.
[19]    Saranya S., Agneeswaran R.,  (2020), Green synthesis of Cu/Cu2O/CuO nanostructures and the analysis of their electrochemical properties .ACS Omega. 5: 1040-1048.
[20]    Murthy H. C. A., Desalegn T., Kassa M., Abebe B., Assefa T., (2020), Synthesis of green copper nanoparticles using medicinal plant hagenia abyssinica (Brace) JF. Gmel. leaf extract: Antimicrobial properties. J. Nanomater. 2020: 1–12.
[21]    Ghosh M. K., Sahu S., Gupta I., Ghorai T. K., (2020), Green synthesis of copper nanoparticles from an extract of Jatropha curcas leaves: Characterization, optical properties, CT-DNA binding and photocatalytic activity. RSC Adv. 10: 22027–22035.
[22]    Desalegn T., Murthy H. C. A., Adimasu Y., (2021), Medicinal plant syzygium guineense (Willd .) DC leaf extract mediated green Ethiopian. J. Sci. Sustain. Develop. 8: 1–12.
[23]    Rudresha K., Zahir Hussain A., Ravikumar C. R., Anil Kumar M. R., Santosh M. S., (2012), Synthesis and characterization of green CuO using centella asiatica plant leaf extrct: Electrochemical and photocatalytic activities. Adv. Mater. Lett. 4: 195–200.
[24]    Shume W. M., Murthy H. C. A., Zereffa E. A., (2020), A review on synthesis and characterization of Ag2O nanoparticles for photocatalytic applications. J. Chem. 2020: 1–15.
[25]    Desalegn T., Ravikumar C. R., Murthy H. C. A., (2020), Eco-friendly synthesis of silver nanostructures using medicinal plant Vernonia amygdalina Del. leaf extract for multifunctional applications. Appl. Nanosci. 1-17.
[26]    Ramyajuliet M., (2020), Biogenic synthesis of Copper nanoparticles using aquatic pteridophyte Marsilea quadrifolia Linn . rhizome and its antibacterial activity. Int. J. Nano Dimens. 11: 337–345.
[27]    Yaqub A., Malkani N., Shabbir A., Ditta S. A., Tanvir F., Ali S., Naz M., Kazmi S. A. R., Ullah R., (2020), Novel biosynthesis of Copper nanoparticles using zingiber and allium sp. with synergic effect of doxycycline for anticancer and bactericidal activity. Current Microbiol. 77: 2287-2299.
[28]    Paul N., Syed A., Vyawahare P., Dakle R., Ghuge B., (2017), Cestrum nocturnum: An emerging nanofactory for the green synthesis of Silver and Copper nanoparticles and evaluation of their antibacterial activity. Int. Res. J. Pharmac. 8: 42–45.
[29]    Asghar M. A., Asghar M. A., (2020), Green synthesized and characterized copper nanoparticles using various new plants extracts aggravate microbial cell membrane damage after interaction with lipopolysaccharide Muhammad. Int. J. Biolog. Macromolec. 160: 1168-1176.
[30]    Murthy H. C. A., Abebe B., (2018), Material science research India a review on green synthesis and applications of Cu and CuO nanoparticles. 15: 127-134.
[31]    Kumar M. R. A., Abebe B., Nagaswarupa H. P., Murthy H. C. A., Ravikumar C. R., Sabir F. K.,  (2020), Enhanced photocatalytic and electrochemical performance of TiO2-Fe2O3 nanocomposite: Its applications in dye decolorization and as supercapacitors. Scientific Rep. 10: 1249-1258.
[32]    Abebe B., Murthy H. C. A., Zereffa E. A., Adimasu Y., (2020), Synthesis and characterization of ZnO/PVA nanocomposites for antibacterial and electrochemical applications. Inorg. Nano-Metal Chem. 50: 1–12.
[33]    Roy A., Bulut O., Some S., Mandal A. K., Yilmaz M. D., (2019), Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 9: 2673–2679.
[34]    Khatami M., Heli H., Mohammadzadeh Jahani P., Azizi H., Lima Nobre M. A., (2017), Copper/copper oxide nanoparticles synthesis using Stachys lavandulifolia and its antibacterial activity. IET Nanobiotechnol. 11: 709–713.
[35]    Azarbani F., Shiravand S., (2020), Green synthesis of silver nanoparticles by Ferulago macrocarpa flowers extract and their antibacterial, antifungal and toxic effects. Green Chem. Lett. Rev. 13: 41–49.
[36]    Sreeju N., Rufus A., Philip D., (2019), Nanostructured copper (II) oxide and its novel reduction to stable copper nanoparticles. J. Phys. Chem. Solids. 124: 250–260.
[37]    Nazar N., Bibi I., Kamal S., Iqbal M., Nouren S., Jilani K., Umair M., Ata S., (2018),  Cu nanoparticles synthesis using biological molecule of P. granatum seeds extract as reducing and capping agent: Growth mechanism and photo-catalytic activity. Int. J. Biolog. Macromolec. 106: 1203–1210.
[38]    Murthy H. C. A., Desalegn Zeleke T., Ravikumar C. R., Anil Kumar M. R., Nagaswarupa H. P., (2020), Electrochemical properties of biogenic silver nanoparticles synthesized using Hagenia abyssinica (Brace) JF. Gmel. medicinal plant leaf extract. Mater. Res. Express. 7: 055016-055021.
[39]    Fuku X., Modibedi M., Mathe M., (2020), Green synthesis of Cu/Cu2O/CuO nanostructures and the analysis of their electrochemical properties. SN Appl. Sci. 2: 902-908.
[40]    Cheirmadurai K., Biswas S., Murali R., Thanikaivelan P., (2014), Green synthesis of copper nanoparticles and conducting nanobiocomposites using plant and animal sources. RSC Adv. 4: 19507–19511.
[41]    Kaur P., Thakur R., Chaudhury A., (2016), Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem. Lett. Rev.9: 33–38.
[42]    Hu D., Ogawa K., Kajiyama M., Enomae T., (2020), Characterization of self-assembled silver nanoparticle ink based on nanoemulsion method. Royal Society Open Sci. 7: 122-131.
[43]    Zain N. M., Stapley A. G. F., Shama G., (2014), Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydrate Polym. 112: 195–202.
[44]    Rajesh K. M., Ajitha B., Reddy Y. A. K., Suneetha Y., Reddy P. S., (2018), Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik. 154: 593–600.
[45]    Renuga D., Jeyasundari J., Shakthi Athithan A. S., Brightson Arul Jacob Y., (2020), Synthesis and characterization of copper oxide nanoparticles using Brassica oleracea var. italic extract for its antifungal application. Mater. Res. Express. 7: 045007-045011.
[46]    Aher Y., Jain G., Patil G., Savale A., Ghotekar S., Pore D., Pansambal S., Deshmukh K., (2017), Biosynthesis of copper oxide nanoparticles using leaves extract of Leucaena leucocephala L. and their promising upshot against diverse pathogens. Int. J. Molec. Clinic. Microbiol. 7: 776–786.
[47]    Asghar M. A., Zahir E., Shahid S. M., Khan M. N., Asghar M. A., Iqbal J., Walker G., (2018), Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B 1 adsorption activity. LWT - Food Sci. Technol. 90: 98–107.