Investigation and optimization of heat transfer coefficient of MWCNTs-Water nanofluids in a plate heat exchanger

Document Type : Reasearch Paper


Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran.


This article reports an experimental study of heat transfer characteristics of multi-walled carbon nanotubes (MWCNTs). These nanofluids, consisting of water with different weight concentrations of nanofluid (0.0.1–0.145% wt.), have flown in counter flow plate heat exchanger under turbulent conditions (the range of Reynolds numbers 2500-6500) for cooling applications. The nanofluid was prepared by dispersing MWCNT nanoparticles in the presence of sodium dodecyl sulfate (SDS) and water as base fluid. The results showed that the convective heat transfer coefficient (HTC) of nanofluid was higher than that of the base fluid at an equal mass flow rate and inlet temperature. The heat transfer coefficient of nanofluid increased by mass flow rate and temperature rising. Also, the heat transfer coefficient and the concentration of MWCNTs nanofluid showed a positive association at the same temperature.  At a constant weight concentration, the heat transfer coefficient increased when the Reynolds number increased. The slope weight concentration tended to rise as the heat transfer coefficient growing. The increase in Reynolds numbers (or mass flow) was less than the increase in the concentration of carbon nanotubes. According to the performed experiments and software analysis (QUALITEK 4), the heat transfer coefficient and concentration both multiplied at the same time. But there was an inverse relationship between the heat transfer coefficient and flow rate.


1. Shirvan  K. M., Mamourian  M., Esfahani J. A., (2019), Experimental study on thermal analysis of a novel shell and tube heat exchanger with corrugated tubes. J. Therm. Anal. Calorim. 138: 1583-1606.
2. Albadr J., Tayal S., Alasadi M., (2013), Heat transfer through heat exchanger using Al2O3 nanofluid at different concentrations. Case Studies in Therm. Eng. 1: 38-44.
3. Wu Z., Wang L., Sundén B., (2013), Pressure drop and convective heat transfer of water and nanofluids in a double-pipe helical heat exchanger. Appl. Therm. Eng. 60: 266-274.
4. Han C., Zou L., (2015), Study on the heat transfer characteristics of a moderate-temperature heat pipe heat exchanger. Int. J. Heat and Mass Transf. 91: 302-310.
5. Kumar B., Singh S. N., (2017), Study of pressure drop in single pass U-type plate heat exchanger. Exp. Therm. Fluid Sci. 87: 40-49.
6. Goodarzi M., Amiri A., Goodarzi M. S., Safaei M. R., Karimipour A., Languri E. M., Dahari M., (2015), Investigation of heat transfer and pressure drop of a counter flow corrugated plate heat exchanger using MWCNT based nanofluids. Int. Communic. Heat Mass Transf. 66: 172-179.
7. Tisekar Salman W., Mukadam Shakeeb A., Vedpathak Harshad S., Rasal Priyanka K., Khandekar S. B., (2016), Performance analysis of corrugated plate heat exchanger with water as working fluid. Int. J. Res. Eng. Technol. 5: 56-62.
8. Ebrahimnia-Bajestan, E., Moghadam, M. C., Niazmand, H., Daungthongsuk, W., & Wongwises, S., (2016), Experimental and numerical investigation of nanofluids heat transfer characteristics for application in solar heat exchangers. International Journal of Heat and Mass Transfer92, 1041-1052.
9. Agromayor R., Cabaleiro D., Pardinas A. A., Vallejo J. P., Fernandez-Seara J., Lugo L., (2016), Heat transfer performance of functionalized graphene nanoplatelet aqueous nanofluids. Materials. 9: 455-471.
10. Bahiraei M., Rahmani R., Yaghoobi A., Khodabandeh E., Mashayekhi R., Amani M., (2018), Recent research contributions concerning use of nanofluids in heat exchangers: A critical review. Appl. Therm. Eng. 133: 137-159.
11.  Thakur M., Gangacharyulu D., Singh G., (2017), An experimental study on thermophysical properties of multiwalled carbon nanotubes. Int. J. Eng. Transact. B: Applic. 30: 1223-1230.
12.  Harshal Arun Kh., Tamkhade P. K., Lele M. M., Mali K. V., (2016), Experimental investigation of plate heat exchanger with Water/Oil combination. Int. Eng. Res. J. 931-937.
13. Naik V. R., Matawala V. K., (2013), Experimental investigation of single phase chevron type gasket plate heat exchanger. Stainless Steel. 316: 16-25.
14.  Asadi M., Khoshkhoo R. H., (2014), Effects of chevron angle on thermal performance of corrugated plate heat exchanger. Int. J. Eng. Pract. Res. (IJEPR). 3: 8-12.
15. Xing M., Yu J., Wang R., (2015), Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes. Int. J. Heat Mass Transf. 88: 609-616.
16. Shanbedi M., Heris S. Z., Amiri A., Baniadam M., (2014), Improvement in heat transfer of a two-phased closed thermosyphon using silver-decorated MWCNT/water. J. Dispers. Sci. Technol. 35: 1086-1096.
17. Das P. K., (2017), A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J. Molec. Liq. 240: 420-446.
18. Amiri A., Shanbedi M., Amiri H., Heris S. Z., Kazi S. N., Chew B. T., Eshghi H., (2014), Pool boiling heat transfer of CNT/water nanofluids. Appl. Therm. Eng. 71: 450-459.
19. Shanbedi M., Amiri A., Heris S. Z., Eshghi H., Yarmand H., (2018), Effect of magnetic field on thermo-physical and hydrodynamic properties of different metals-decorated multi-walled carbon nanotubes-based water coolants in a closed conduit. J. Therm. Analy. Calorim. 131: 1089-1106.
20. Amiri A., Shanbedi M., Ali Akbarzade M. J., (2016), The specific heat capacity, effective thermal conductivity, density, and viscosity of coolants containing carboxylic acid functionalized multi-walled carbon nanotubes. J. Dispers. Sci. Technol. 37: 949-955.
21. Shanbedi M., Zeinali Heris S., Maskooki A. M., (2015), Experimental investigation of stability and thermophysical properties of carbon nanotubes suspension in the presence of different surfactants. J. Therm. Anal. Calorim. 120: 1193–1201.
22. Sundar  L. S., Naik M. T., Sharma K. V., Singh M. K., Reddy T. C. S., (2012), Experimental investigation of forced convection heat transfer and friction factor in a tube with Fe3O4 magnetic nanofluid. Exp. Therm. Fluid Sci. 37: 65-71.
23. Shanbedi M., Heris S. Z., Amiri A., Eshghi H., (2016), Synthesis of water-soluble Fe-decorated multi-walled carbon nanotubes: A study on thermo-physical properties of ferromagnetic nanofluid. J. Taiwan Inst. Chem. Eng. 60: 547-554.
24. Sabiha M. A., Mostafizur R. M., Saidur R., Mekhilef S., (2016), Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids. Int. J. Heat Mass Transf. 93: 862-871.
25. Kathiravan R., Kumar R., Gupta A., Chandra R., Jain P. K., (2011), Pool boiling characteristics of multiwalled carbon nanotube (CNT) based nanofluids over a flat plate heater. Int. J. Heat Mass Transf. 54: 1289-1296.
26. Mota F. A., Carvalho E. P., Ravagnani M. A., (2015), Modeling and design of plate heat exchanger. In Heat Transfer Studies and Applications. IntechOpen.
27. Ramezani Azghandi O., Maghrebi M. J., Teymourtash A. R., (2016), Modification of Glucose biosensor using Pt/MWCNTs electrode and optimization by application of taguchi method. Int. J. Nano Dimens. 7: 231-239.