Photocatalytic degradation of water pollutant dye by solid state synthesized Ni1-xLnxSb2O6 (Ln=Eu, Gd, Ho and Yb) nanocomposites

Document Type: Reasearch Paper

Authors

1 Department of Physics, Faculty of Science, Jundi-Shapur University of Technology, Dezful, Iran.

2 Department of Chemistry, Faculty of Science, Jundi-Shapur University of Technology, Dezful, Iran.

Abstract

Nanostructured Ni1-xLnxSb2O6 (Ln = Eu, Gd, Ho and Yb) powders were synthesized via stoichiometric 1:2 Ni:Sb molar ratio by solid state reaction at 800 ºC for 8 h using Ni(NO3)2, Sb2O3, Eu2O3, Gd2O3 and Ho2O3 raw materials. The synthesized materials were characterized by X-ray diffraction (XRD) technique. Structural analyses were done by FullProf program employing profile matching with constant scale factor. The results showed that the patterns had a main orthorhombic NiSb2O6 crystal structure with P42/mbc space group. The morphologies of the synthesized materials were studied by field emission scanning electron microscope (FESEM) which showed that the synthesized samples had sponge morphology. Ultraviolet – Visible (UV-Vis) spectroscopy showed that the smallest direct optical band gap energies were in the ranges of 1.6 to 1.8 eV suggesting a high efficient photocatalytic activity. Photocatalytic performance of the synthesized nanomaterials was investigated for the degradation of pollutant Malachite Green (MG) in aqueous solution under visible light condition. It was found that the optimum conditions were 0.04 mL H2O2, 30 mg catalyst, and 35 min reaction time. It was found that the synthesized NiSb2O6 nanocatalyst had very good efficiency in aqueous solution under the optimized conditions at the presence of visible light irradiation. The degradation yield at the optimized conditions was 96 %. The optimum photocatalytic condition was used to study the performance of the other synthesized materials in the photocatalytic degradation process.

Keywords


[1] Nikulin A. Y., Zvereva E. A., Nalbandyan V. B., Shukaev I. L., Kurbakov A. I., Kuchugura M. D., Raganyan G. V., Popov Y. V., Ivanchenko V. D., Vasiliev A. N., (2017), Preparation and characterization of metastable trigonal layered MSb2O6 phases (M = Co, Ni, Cu, Zn, and Mg) and considerations on FeSb2O6. Dalton Trans. 46: 6059-6068.

[2] Shengsong G., Qingyao W., Qian S., Yuhua Z., Xiaokun Y., Xiaojie W., (2011), Hydrothermal synthesis of morphology-controllable Sb2O3 microstructures: Hollow spindle-like and cobblestone-like microstructures. Appl. Sur. Sci. 257: 3657–3665.

[3] Jiao S., Pang G., Liang H., Chen Y., Feng S., (2007), Hydrothermal synthesis and magnetic properties of CuSb2O6 nanoparticles and nanorods. J. Nanopart. Res. 9: 605-610.

[4] Singh A., Singh A., Singh S., Tandon P., (2016), Nickel antimony oxide (NiSb2O6): A fascinating nanostructured material for gas sensing application. Chem. Phys. Lett. 646: 41-46.

[5] Westin G., Nygren M., (1993), Sol-Gel Preparation of M-Sb oxides from Sb (OBu"), -M-Acetate precursors with M = Mn, Co, Ni. J. Mater. Chem. 3: 367-371.

[6] Singh J., Bhardwaj N., Uma S., (2013), Single step hydrothermal based synthesis of M(II)Sb2O6 (M = Cd and Zn) type antimonates and their photocatalytic properties. Bull. Mater. Sci. 36: 287-291.

[7] Larcher D., Prakash A. S., Laffont L., Womes M., Jumas J. C., Olivier-Fourcade J., Hedge M. S., Tarascon J. M., (2006), Reactivity of antimony oxides and MSb2O6, M = Cu, Ni, Co…, trirutile-type phases with metallic Lithium. J. Electrochem. Soc. 153: 1778-1787.

[8] Ehrenberg H., Wltschek G., Rodriguerz-Carvajal J., Vogt T., (1998), Magnetic structure of the tri-rutiles NaTa2O6 and NiSb2O6. J. Magn. Magn. Mater. 184: 111-115.

[9] Bonilla H. G., Betancourtt V. M. R., Bonilla J. T. G., Mortinz M. F., Bonilla A. G., Gonzalez M. A., Salazar S. S. S., Ortiz L. G., (2016), Synthesis and characterization of Nanostructured NiSb2O6 powders. IX International conference in surfaces'', materials and vacuum. September 26 th – 30 th, Mexico. Page 259.

[10] Hakimyfard A., (2017), Effects of reaction temperature and raw material type on optical properties and crystal phase growth of Solid state synthesized NiSb2O6 nanomaterials. J. Adv. Mater. Proc. 5: 56-65.

[11] Srivastava S., Sinha R., Roy D., (2004), Toxicological effects of malachite green. Aquatic toxicology. 66: 319-329.

[12] Tolia J., Chakraborty M., Murthy Z., (2012), Photocatalytic degradation of malachite green dye using doped and undoped ZnS nanoparticles. Pol. J. Chem. Technol. 14: 16-21.

[13] Chen C., Lu C., Chung Y., Jan J., (2007), UV light induced photodegradation of malachite green on TiO2 nanoparticles. J. Hazard. Mater. 141: 520-528.

[14] Kusuma H. S., Sholihuddin R. I., Harsini M., Darmokoesoemo H., (2016), Electrochemical degradation of malachite green dye using Carbon/TiO2 electrodes. J. Mater. Environ. Sci. 7: 1454-1460.

[15] Miranzadeh M., Afshari F., Khataei B., Kassaee M., (2020), Adsorption and photocatalytic removal of arsenic from water by a porous and magnetic nanocomposite: Ag/TiO2/Fe3O4@GO. Adv. J. Chem. A. 3: 408-421.

[16] Sajjadnejad M., Karimi Abadeh H., (2020), Processing of nanostructured TiO2 and modification of its photocatalytic behavior for methylene blue degradation. Adv. J. Chem. A. 3: 422-431.

[17] Hu K.-h., Meng M., (2013), Degradation of malachite green on MoS2/TiO2 nanocomposite.  Asian J. Chem. 25: 5827-5829.

[18] Ameta K., Tak P., Soni D., Ameta S. C., (2014), Photocatalytic decomposition of malachite green over lead chromate powder. Sci. Rev. Chem. Commun. 4: 38-45.

[19] Bansal P., Bhullar N., Sud D., (2009), Studies on photodegradation of malachite green using TiO2/ZnO photocatalyst. Desalin. Water Treat. 12: 108-113.

[20] Soni H., JI N. K., (2014), UV light induced photocatalytic degradation of malachite GREEN on TiO2 nanoparticles. Int. J. Recent Res. Rev. 7: 10-15.

[21] Sols-Casados D., Escobar-Alarcn L., Fernndez M., Valencia F., (2013), Malachite green degradation in simulated wastewater using Nix : TiO2 thin films. Fuel. 110: 17-22.

[22] Khezami L., Taha K. K., Ghiloufi I., El Mir L., (2016), Adsorption and photocatalytic degradation of malachite green by vanadium doped zinc oxide nanoparticles. Water Sci. Technol. 73: 881-889.

[23] Jo W.-K., Parka G. T., Tayade R. J., (2014), Synergetic effect of adsorption on degradation of malachite green dye under blue LED irradiation using spiral-shaped photocatalytic reactor. J. Chem. Technol. Biotechnol. 90: 2280-2289.

[24] He H-Y., (2015), Photocatalytic degradations of malachite green on magnetically separable Ni1-xCoxFe2O4 nanoparticles synthesized by using a hydrothermal process. Amer. Chem. Sci. J. 6: 58-68.

[25] Afshar S., Samari Jahromi H., Jafari N., Ahmadi Z., Hakamizadeh M., (2011), Degradation of malachite green oxalate by UV and visible lights irradiation using Pt/TiO2/SiO2 nanophotocatalyst. Sci. Iran. 18: 772-779.

[26] Khademinia S., Behzad M., Kafi-Ahmadi L., Hadilou S., (2018), Hydrothermally synthesized strontium arsenate nanomaterial through response surface methodology. Z. Anorg. Allg. Chem. 644: 221-227.

[27] Hosseiny Davarani S. S., Rezayati zad Z., Taheri A. R., Rahmatian N., (2017),  Highly selective solid phase extraction and preconcentration of Azathioprine with nano-sized imprinted polymer based on multivariate optimization and its trace determination in biological and pharmaceutical samples. Mater. Sci. Eng. C. 71: 572–583.

[28] Abdollahi F., Taheri A., Shahmari M., (2019), Application of selective solid-phase extraction using a new core-shell-shell magnetic ionimprinted polymer for the analysis of ultra-trace mercury in serum of gallstone patients. Sep. Sci. Technol. https://doi.org/10.1080/01496395.2019.1651337.

[29] Lee J. W., Lee J. K., Cho S. K., Jung J. S., Lee S. H., (2004), Partial oxidation of methane over M-Sb-Te-O (M = Transition Metal) catalysts. Bull. Korean Chem. Soc. 25: 573-576.

[30] Alabdeen S. Z., Ismail I., (2016), Studying the structural changes of NiSb2O4 by temperature using Sol-Gel method. Chem. Mater. Res. 8: 13-17.

[31] Naidu B. S., Pandey M., Sudarsan V., Tewari R., Vats R. K., (2011), Interaction of Sb3 + ions with Eu3+ ions during the room temperature synthesis of luminescent Sb2O3 nanorods: Probed through Eu3+ luminescence. Appl. Sur. Sci. 257: 3657–3665.

[32] Kim S. S., Na H. G., Kwon Y. J., (2015), Synthesis and room-temperature NO2 sensing properties of Sb2O5 nanowires. Met. Mater. Int. 21415–421.

[33] Leineweber A., Jacobs H., Hull S., (2001), Ordering of nitrogen in nickel nitride Ni3N determined by neutron diffraction. Inorg. Chem. 40: 5818-5822.

[34] Hosseinpour Z., Alemi A., Khandar A. A., Zhao X., Xie Y., (2015), A controlled solvothermal synthesis of CuS hierarchical structures and their natural-lightinduced photocatalytic properties. New J. Chem. 39: 5470-5746.

[35] Magdalane C. M., Kaviyarasu K., Vijaya J. J., Siddhardha B., Jeyaraj B., (2016), Photocatalytic activity of binarymetal oxide nanocomposites of CeO2/CdO nanospheres: Investigation of optical and antimicrobial activity. J. Photochem. Photobiol. B: Biol. 163: 77-86.

[36] Tolia J. V., Chakraborty M., Murthy Z. V. P., (2012), Photocatalytic degradation of malachite green dye using doped and undoped ZnS nanoparticles. Pol. J. chem. Technol. 14: 16-21.

[37] Deepa N., Meghna P., Kandasamy S., (2014), Experimental studies on decolonisation of malachite dye using continuous photocatalytic reactor. Int. Res. J. Environ. Sci. 3: 14-21.

[38] Hameed B. H., Lee T. W., (2009), Degradation of malachite green in aqueous solution by Fenton process. J. Hazard. Mater. 164: 468-472.

[39] Abilarasu A., Somanathan T., Saravanan A., Saravanan V., Rajakumar P., (2016), Enhanced photocatalytic degradation of malachite green on spinel ferrite (Nickel/Magnesium Ferrite) under direct sun light. Sci. Bio. Pharma. J. Int. 7: 93-99.