Enhanced structural, optical and antibacterial activities of Zn2SnO4 nanorods synthesized by Microwave assisted method

Document Type: Reasearch Paper


Department of Physics, Alagappa University, Karaikudi-630 004, Tamil Nadu, India.


In this research, Zn2SnO4 nanorods were prepared and structural properties of the nanorods were characterized, developing of wide-range of the optical behavior of Zn2SnO4 nanorods and the antibacterial activity was also investigated using a microwave-assisted method. A zinc stannate (Zn2SnO4) nanorod was synthesized via facile microwave-assisted method using ammonia with cubic spinel structure. The crystallography and optical properties were studied using X-ray diffraction and photoluminescence spectroscopy. The morphology of the nanoparticles was observed using field emission scanning electron microscopy. The antibacterial effect of Zn2SnO4 nanoparticles tested against Gram-positive and Gram-negative pathogenic bacteria was investigated. The Zn2SnO4 nanorods showed the excellent antibacterial activity, the inhibition zone indicates the biocidal action of Zn2SnO4 nanorods. Here, we concluded that these materials were used as a bactericidal agent to prevent and control the spread and persistence of infectious diseases.


1.       Ali M. B., Fatiha B. B., Habib E., Brigitte S., Ahmed A., Luc B., Mokhtar F., Rabah B., (2015), Hydrothermal synthesis, phase structure, optical and photocatalytic properties of Zn2SnO4 nanoparticles. J. Colloid Interface Sci. 457: 360-369.
2.       Zeng J., MuDi X., Kun W. L., Hao W., Hui Y., Wen J. Z., (2008), Transformation process and photocatalytic activities of hydrothermally synthesized Zn2SnO4 nanocrystals. J. Phys. Chem. 112: 4159-4167.
3.       Wang W‐W., Zhu Y‐J., Yang L‐X., (2007), ZnO–SnO2 hollow spheres and hierarchical nanosheets: hydrothermal preparation, formation mechanism, and photocatalytic properties. Adv. Funct. Mater. 17: 59-64.
4.       Fu G., Huan C., Zhexiong C., Jinxiu Z., Heinz K., (2002), Humidity sensitive characteristics of Zn2SnO4–LiZnVO4 thick films prepared by the sol–gel method.Sens. Actuators B Chem. 81: 308-312.
5.       Šepelák V., Sebastian M. B., Ingo B., Sylvio I., Marco S., Armin F., Christian K., (2012), Nonequilibrium structure of Zn2SnO4 spinel nanoparticles. J. Mater. Chem. 22: 3117-3126.
6.       Jaculine M., Justin Raj C., Jerome Das S., (2013), Hydrothermal synthesis of highly crystalline Zn2SnO4 nanoflowers and their optical properties. J. Alloys Compd. 577: 131-137.
7.       ZhaoY., Ying H., Qiufen W., Ke W., Meng Z., Lei W., Wei Z., Xu S., (2013), Preparation of hollow Zn2SnO4 boxes for advanced lithium-ion batteries. RSC Adv. 3: 14480-14485.
8.       Raja A., Ashokkumar S., Pavithra Marthandam R., Jayachandiran J., Chandra Prasad K., Kaviyarasu K., Ganapathi Raman R., Swaminathan M., (2018), Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity. J Phochem. Photobio. B. 181: 53-58.
9.     Dinesh S., Barathan S., Premkumar V. K., Sivakumar G., Anandan N., (2016), Hydrothermal synthesis of zinc stannate (Zn2SnO4) nanoparticles and its application towards photocatalytic and antibacterial activity. J. Mater. Sci.: Mater. Electron. 27: 9668-9675.
10.    Abdulrahman H., Chandrasekaran K., Abdulazees Parveez A., Nooruddin T., Naiyf S. A., Sulaiman Ali A., Ganasan R., (2016), In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Sci. Rep. 6: 24312-24318.
11.    Foster H., Iram B. D., Sajnu V., Alex S., (2011), Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 90: 1847-1868.
12.    Samreen F., Mahendra S., Mazahar F., Pathan M., (2019), Biosynthesis of Silver nanoparticle using aqueous extract of Saraca asoca leaves, its characterization and antimicrobial activity. Int. J. Nano Dimens.10: 163-168.
13.    Leila K., Robabe M., Shahin K.,  (2018), Influence of reaction parameters on crystal phase growth and optical properties of ultrasonic assisted Hydro-and solvothermal synthesized sub-micrometer-sized CdS spheres. Int. J. Nano Dimens. 9: 346-356.
14.    Assi N., Abroumand Azar P., Saber Tehrani M., Husain S. W., Darvish M., Pourmand S., (2017), Synthesis of ZnO-nanoparticles by microwave assisted sol-gel method and its role in photocatalytic degradation of food dye Tartrazine. Int. J. Nano Dimens. 8: 241-249.
15.    Rejani P., Asha R., Beena B., (2014), Structural, optical and dielectric studies in ZnO nanorods by microwave assisted method. Int. J. Nano Dimens. 5: 497-503.
16.    Hankare P. P., Chate P. A., Sathe D. J., Chavan P. A., Bhuse V. M., (2009), Effect of thermal annealing on properties of zinc selenide thin films deposited by chemical bath deposition. J. Mater. Sci.: Mater. Electron. 20: 374-379.
17.    Sepelák V., Becker S. M., Bergmann I., Indris S., Scheuermann M., Feldhoff A., Kübel C., Bruns M.,  Stürzl N., Ulrich A. S., Ghafari M., Hahn H., Grey C. P., Beckerbk K. D., Heitjans P., (2012), Nonequilibrium structure of Zn2SnO4 spinel nanoparticles. J. Mater. Chem. 22: 3117–3126.
18.    Wang Y., Liao X., Huang Z., Yin G., Gu  J., Yao Y.,  (2010), X-ray diffractometer patterns of the pure and Cedoped ZnO nanostructures exhibit hexagonal wurtzite crystal structure. Colloids Surf. A. 372: 165-172.
19.    Vijayaprasath G., Soundarrajan  P., Ravi G., (2018), The point defects induced ferromagnetism in ZnO semiconductor by terbium doping via co-precipitation method. J. Mater. Sci.: Mater. Electron. 29: 11892-11900.
20.    Jeronsia J., Allwin Joseph L., Mary Jaculine M., Annie Vinosha P., Jerome Das S., (2016), Hydrothermal synthesis of zinc stannate nanoparticles for antibacterial applications. J. Taibah. Univ. Sci. 10: 601-606.
21.    Wang J. X., Xie S. S., Gao Y., Yan X. Q., Liu D. F., Yuan H. J., Zhou Z. P., (2004), Growth and characterization of axially periodic Zn2SnO4 (ZTO) nanostructures. J. Cryst. Growth. 267: 177-183.
22.    Wang J. X., Xie S. S., Yuan H. J., Yan, X. Q., Liu D. F., Yuan H. J., Zhou Z. P., (2004), Synthesis, structure, and photoluminescence of Zn2SnO4 single-crystal nanobelts and nanorings. Solid State Commun. 131: 435-440.
23.    Wang J., Xiao W. S., Shishen X., Weiya Z., Yi Y., (2007), Single-crystal and twinned Zn2SnO4 nanowires with axial periodical structures. Cryst. Growth Des. 8: 707-710.
24.    Kim H. S., Seon O. H., Yoon M., Jeunghee P., Seung Y. B., Jae P. A., (2008), Three-dimensional structure of helical and zigzagged nanowires using electron tomography. Nano Let. 8: 551-557.
25.    Applerot G., Lellouche J., Perkas N., Nitzan Y., Gedanken A., Banin E., (2012),  ZnO nanoparticle-coated surfacesinhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv. 2: 2314–2321.
26.    Zhao J-W., Li-Rong Q., Zhang L-D., (2007), Single-crystalline Zn2SnO4 hexangular microprisms: Fabrication, characterization and optical properties. Solid state commun. 141: 663-666.
27.    Li Q., Shaily M., Delina Y. L., Lena B., Michael V. L., Dong L., Pedro J. A., (2011), Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 42: 4591-4602.
28.    Foster H. A., Iram B. D., Sajnu V., Alex S., (2011), Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Appl. Microbiol. Biotechnol. 90: 1847-1868.
29.    Wilson M. R., Janet H. L., Ken D., Jill S., Vicki S., (2002),  Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol. Appl. Pharm. 184: 172-179.
30.    Fang M., Chen J-H., Xu X-L., Yang  P-H., Hartmut F. H., (2006), Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int. J. Antimicrob. Agents. 27: 513-517.