Hybrid nanofluid based on CuO nanoparticles and single-walled Carbon nanotubes: Optimization, thermal, and electrical properties

Document Type: Reasearch Paper

Authors

1 Department of Mechanical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.

2 Department of Textile and Polymer Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.

3 Department of Mechanical Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran.

Abstract

The purpose of this study is to use the thermal and electrical conductivities of copper oxide nanoparticles and carbon nanotubes for the preparation of high-performance nanofluids for achieving better heat transfer properties. These nanofluids consist of a water/Ethylene Glycol solution containing single-wall carbon nanotubes (SWCNTs) and copper oxide nanoparticles (CuONPs). The effects of such independent variables as CuONPs and SWCNT concentrations, Ethylene Glycol ratio and solution pH were optimized to enhance the Thermal conductivity by the response surface method. The experimental results revealed that adding small amounts of nanoparticles to water/Ethylene Glycol mixtures would improve the thermal and electrical conductivity of nanofluids. The morphology of the nanoparticles was investigated by Scanning and Transmission Electron Microscopy (SEM and TEM) and Energy-Dispersive X-ray Spectroscopy (EDS). For the first time, the electrical conductivity of nanofluids was investigated by electrical impedance spectroscopy. The combined effects of both nanoparticles and nanotubes on thermal and electrical properties of the base fluid were compared to the influence of each on the same base fluid. The electrical and thermal conductivities could be enhanced by 18000 % and 157 % by addition of 0.41 % wt of SWCNT and 1.15 % wt of CuONPs to a 44:56 Ethylene Glycol-water mixture.

Keywords


[1] Fayaz H., Nasrin R., Rahim N. A., Hasanuzzaman M., (2018), Energy and exergy analysis of the PVT system: Effect of nanofluid flow rate. J. Sol. Energy. 169: 217-230.

[2] Nasirzadehroshenin F., Sadeghzadeh M., Khadang A., Maddah H., Ahmadi M. H., Sakhaeinia H., Chen L., (2020), Modeling of heat transfer performance of carbon nanotube nanofluid in a tube with fixed wall temperature by using ANN–GA. The Europ. Phys. J. Plus.135: 217-222.

[3] Sadeghzadeh M., Ahmadi M. H., Kahani M., Sakhaeinia H., Chaji H., Chen L., (2019), Smart modeling by using artificial intelligent techniques on thermal performance of flat-plate solar collector using nanofluid. Energy Sci. Eng.7: 1649-1658.

[4] Sharma A. K., Tiwari A. K., Dixit A. R., (2018), Prediction of temperature distribution over cutting tool with alumina-MWCNT hybrid nanofluid using computational fluid dynamics (CFD) analysis. Int. J. Adv. Manuf. Tech. 97: 427-439.

[5] Nasrin R., Rahim N. A., Fayaz H., Hasanuzzaman M., (2018), Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research. Renew. Energ. 121: 286-300.

[6] Hemmat Esfe M., Rostamian H., Reza Sarlak M., (2018), A novel study on rheological behavior of ZnO-MWCNT/10w40 nanofluid for automotive engines. J. Mol. Liq. 254: 406-413.

[7] Mahbubul I., Khan M. M. A., Ibrahim N. I., Ali H. M., Al-Sulaiman F. A., Saidur R., (2018), Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector. Renew. Energ. 121: 36-44.

[8] Aghayari R., Maddah H., Pourkiaei S. M., Ahmadi M. H., Chen L., Ghazvini M., (2020), Theoretical and experimental studies of heat transfer in a double-pipe heat exchanger equipped with twisted tape and nanofluid. Europ. Phys. J. Plus.135: 252-258.

[9] Ramezanizadeh M., Ahmadi M. H., Nazari M. A., Sadeghzadeh M., Chen L., (2019), A review on the utilized machine learning approaches for modeling the dynamic viscosity of nanofluids. Renew. Sust. Energy Rev.114: 109345-109352.

[10] Esfe M. H., Raki H. R., Emami M. R. S., Afrand M., (2019), Viscosity and rheological properties of antifreeze based nanofluid containing hybrid nano-powders of MWCNTs and TiO2 under different temperature conditions. Powder Technol. 342: 808-816.

[11] Ranjbarzadeh R., Moradikazerouni A., Bakhtiari R., Asadi A., Afrand M., (2019), An experimental study on stability and Thermal conductivity of water/silica nanofluid: Eco-friendly production of nanoparticles. J. Clean. Prod.206: 1089-1100.

[12] Sheikholeslami M., (2018), Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J. Mol. Liq.249: 1212-1221.

[13] Pramuanjaroenkij A., Tongkratoke A., Kakaç S., (2018), Numerical study of mixing Thermal conductivity models for nanofluid heat transfer enhancement. J. Eng. Phys.  Thermophys.  91: 104-114.

[14] Li Z., Sheikholeslami M., Jafaryar M., Shafee A., Chamkha A. J., (2018), Investigation of nanofluid entropy generation in a heat exchanger with helical twisted tapes. J. Mol. Liq.266: 797-805.

[15] Das P. K., (2017), A review based on the effect and mechanism of Thermal conductivity of normal nanofluids and hybrid nanofluids. J. Mol. Liq.240: 420-446.

[16] Esfe M. H., Wongwises S., Naderi A., Asadi A., Safaei M. R., Rostamian H., Dahari M., Karimipour A., (2015), Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: Experimental data and modeling using artificial neural network and correlation. Int. Commun. Heat Mass Transf. 66: 100-104.

[17] Baghbanzadeh M., Rashidi A., Rashtchian D., Lotfi R., Amrollahi A., (2012), Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of Thermal conductivity of related nanofluids. Thermochim. Acta.549: 87-94.

[18] Harandi S. S., Karimipour A., Afrand M., Akbari M., D'Orazio A., (2016), An experimental study on Thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: Effects of temperature and concentration. Int. Commun. Heat Mass Transf.76: 171-177.

[19] Yarmand H., Gharehkhani S., Ahmadi G., Shirazi S. F. S., Baradaran S., Montazer E., Zubir M. N. M., Alehashem M. S., Kazi, S., Dahari M., (2015), Graphene nanoplatelets–silver hybrid nanofluids for enhanced heat transfer. Energy Conver. Manage. 100: 419-428.

[20] Abbasi S. M., Rashidi A., Nemati A., Arzani K., (2013), The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceram. Int. 39: 3885-3891.

[21] Moghadassi A., Ghomi E., Parvizian F., (2015), A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer. Int. J. Therm. Sci.92: 50-57.

[22] Ghadikolaei S., Yassari M., Sadeghi H., Hosseinzadeh K., Ganji D., (2017), Investigation on thermophysical properties of Tio2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol.322: 428-438.

[23] Sundar L. S., Singh M. K., Sousa A. C., (2014), Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int. Commun. Heat Mass Transf.52: 73-83.

[24] Ravisankar B., Chand V. T., (2013), Influence of nanoparticle volume fraction, particle size and temperature on thermal conductivity and viscosity of nanofluids-A review. Int. J. Automot.8: 1316-1338.

[25] Mikkola V., Puupponen S., Granbohm H., Saari K., Ala-Nissila T., Seppälä A., (2018), Influence of particle properties on convective heat transfer of nanofluids. Int. J. Therm. Sci. 124: 187-195.

[26] Mahbubul I., Saidur R., Amalina M., (2013), Thermal conductivity, viscosity and density of R141b refrigerant based nanofluid. Procedia Eng. 56: 310-315.

[27] Ramachandran K., Kadirgama K., Ramasamy D., Samykano M., Samylingam L., Tarlochan F., Najafi G., (2018), Evaluation of specific heat capacity and density for cellulose nanocrystal-based nanofluid. J. Adv. Res. Fluid Mec. Ther. Sci.51: 169-186.

[28] Alrashed A. A., Gharibdousti M. S., Goodarzi M., de Oliveira L. R., Safaei M. R., Bandarra Filho E. P., (2018), Effects on thermophysical properties of carbon based nanofluids: Experimental data, modelling using regression, ANFIS and ANN. Int. J. Heat Mass Transf.125: 920-932.

[29] Selvaraj V., Morri B., Nair L. M., Krishnan H., (2019), Experimental investigation on the thermophysical properties of beryllium oxide-based nanofluid and nano-enhanced phase change material. J. Therm. Ananl. Calorim. 137: 1527-1536.

[30] Afrand M., Najafabadi K. N., Sina N., Safaei M. R., Kherbeet A. S., Wongwises S., Dahari M., (2016), Prediction of dynamic viscosity of a hybrid nano-lubricant by an optimal artificial neural network. Int. Commun. Heat Mass Transf. 76: 209-214.

[31] Esfandiyari T., Nasirizadeh N., Dehghani M., Ehrampoosh M. H., (2017), Graphene oxide based carbon composite as adsorbent for Hg removal: Preparation, characterization, kinetics and isotherm studies. Chin. J. Chem. Eng.25: 1170-1175.

[32] Jafari S., Dehghani M., Nasirizadeh N., Azimzadeh M., (2018), An azithromycin electrochemical sensor based on an aniline MIP film electropolymerized on a gold nano urchins/graphene oxide modified glassy carbon electrode. J. Electroanal. Chem.829: 27-34.

[33] Nazari A., Mirjalili M., Nasirizadeh N., Torabian S., (2015), Optimization of nano TiO2 pretreatment on free acid dyeing of wool using central composite design. J. Ind. Eng. Chem. 21: 1068-1076.

[34] Aghaei F., Seifati S. M., Nasirizadeh N., (2017), Development of a DNA biosensor for the detection of phenylketonuria based on a screen-printed gold electrode and hematoxylin. Anal. Methods. 9: 966-973.

[35] Sarbazi Z., Hormozi F., (2019), Optimization of thermal and hydraulic performance of nanofluids in a rectangular miniature-channel with various fins using response surface methodology. J. Therm. Anal. Calorim. 137: 711-733.

[36] Jafari S., Nasirizadeh N., Dehghani M., (2017), Developing a highly sensitive electrochemical sensor using thiourea-imprinted polymers based on an MWCNT modified carbon ceramic electrode. J. Electroanal. Chem.802: 139-146.

[37] Dehghani M., Nasirizadeh N., Yazdanshenas M. E., (2019), Determination of cefixime using a novel electrochemical sensor produced with gold nanowires/graphene oxide/electropolymerized molecular imprinted polymer. Mater. Sci. Eng. C. 96: 654-660.

[38] Li X., Zhu D., Wang X., Wang N., Gao J., Li H., (2008), Thermal conductivity enhancement dependent pH and chemical surfactant for Cu-H2O nanofluids. Thermochim. Acta.469: 98-103.

[39] Cabaleiro D., Colla L., Barison S., Lugo L., Fedele L., Bobbo S., (2017), Heat transfer capability of (ethylene glycol+ water)-based nanofluids containing graphene nanoplatelets: Design and thermophysical profile. Nanoscale Res. Lett. 12: 1-11.

[40] Akhilesh M., Santarao K., Babu M., (2018), Thermal conductivity of CNT-wated nanofluids: A review. Mech. Mech. Eng.22: 207-220.

[41] Vafaei M., Afrand M., Sina N., Kalbasi R., Sourani F., Teimouri H., (2017), Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Phys. E Low Dimens. Syst. Nanostruct.85: 90-96.

[42] Chamsa-ard W., Brundavanam S., Fung C. C., Fawcett D., Poinern G., (2017), Nanofluid types, their synthesis, properties and incorporation in direct solar thermal collectors: A review. Nanomaterials. 7: 131-137.

[43] Zhou J., Wang Y., Geng J., Jing D., (2018), Characteristic oscillation phenomenon after head-on collision of two nanofluid droplets. Phys. Fluids.30: 072107-072111.

[44] Yu F., Chen Y., Liang X., Xu J., Lee C., Liang Q., Tao P., Deng T., (2017), Dispersion stability of thermal nanofluids. Prog. Nat. Sci. 27: 531-542.

[45] Abareshi M., Shahroodi S. M., (2017), Effects of silver nanoparticles on the thermal properties of polyethylene matrix nanocomposites. J. Therm. Anal. Calorim. 128: 1117-1124.

[46] Sundar L. S., Singh M. K., Sousa A. C., (2013), Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int. Commun. Heat Mass Transf. 44: 7-14.

[47] Sonawane S. S., Juwar V., (2016), Optimization of conditions for an enhancement of thermal conductivity and minimization of viscosity of ethylene glycol based Fe3O4 nanofluid. Appl. Therm. Eng. 109: 121-129.

[48] Kumar N., Sonawane S. S., Sonawane S. H., (2018), Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid. Int. Commun. Heat Mass Transf. 90: 1-10.

[49] Adio S. A., Sharifpur M., Meyer J. P., (2015), Factors affecting the pH and electrical conductivity of MgO–ethylene glycol nanofluids. Bull. Mater. Sci. 38: 1345-1357.

[50] Afrand M., (2017), Experimental study on Thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl. Therm. Eng. 110: 1111-1119.

[51] Zhang J.-X., Zheng Y.-P., Lan L., Mo S., Yu P.-Y., Shi W., Wang R.-M., (2009), Direct synthesis of solvent-free multiwall carbon nanotubes/silica nonionic nanofluid hybrid material. ACS Nano. 3: 2185-2190.

[52] Jha N., Ramaprabhu S., (2008), Synthesis and thermal conductivity of copper nanoparticle decorated multiwalled carbon nanotubes based nanofluids. J. Phys. Chem. C. 112: 9315-9319.

[53] Soltanimehr M., Afrand M., (2016), Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems. Appl. Therm. Eng. 105: 716-723.

[54] Zawrah M., Khattab R., Girgis L., El Daidamony H., Abdel Aziz R. E., (2016), Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC J. 12: 227-234.

[55] Aghili Z., Nasirizadeh N., Divsalar A., Shoeibi S., Yaghmaei P., (2017), A nanobiosensor composed of exfoliated graphene oxide and gold nano-urchins, for detection of GMO products. Biosens. Bioelect. 95: 72-80.

[56] Azimzadeh M., Nasirizadeh N., Rahaie M., Naderi-Manesh H., (2017), Early detection of Alzheimer's disease using a biosensor based on electrochemically-reduced graphene oxide and gold nanowires for the quantification of serum microRNA-137. RSC Adv.7: 55709-55719.

[57] Frikha H., Abdelhedi M., Louati B., Dammak M., Garcia-Granda S., (2018), Structure, thermal decomposition, vibrational and impedance spectroscopy studies of an rubidium cesium phosphate tellurate Rb 1.84 Cs 0.16 HPO 4 Te (OH) 6. J. Therm. Ananl. Calorim. 131: 2795-2808.

[58] Babar H., Sajid M. U., Ali H. M., (2019), Viscosity of hybrid nanofluids: A critical review. Therm. Sci.23: 1713-1754.

[59] Baghbanzadeh M., Rashidi A., Soleimanisalim A. H., Rashtchian D., (2014), Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT. Thermochim. Acta. 578: 53-58.