Synthesis and characterization of Polyvinyl Alcohol-Polypyrrole-Silver nanocomposite polymer films


1 Department of Physics, Sathaye College, Dixit Road, Vile Parle (East), Mumbai 400057, India.

2 Kirti M. Doongursee College, Dadar (West), Mumbai 400028, India.


The present paper describes the preparation and characterization of Polyvinyl Alcohol-Polypyrrole-Silver Nanocomposite (PVA-PPy-Ag NC) films. The prepared films were conducting, freestanding, flexible, and robust. Silver nanoparticles (Ag NPs) were synthesized from an aqueous solution of silver nitrate using trisodium citrate as a reductant. The casting solution for the films was prepared by in-situ chemical oxidative polymerization of pyrrole. This was done in the presence of Polyvinyl Alcohol and suspension of pre-synthesized silver nanoparticles. The absorption band at 424 nm in UV-Visible Spectroscopy of silver nanoparticles confirmed the formation of Ag nanoparticles. Scanning Electron Microscopy (SEM) studies revealed that spherical Ag NPs were produced with an average size of ~ 25 nm. The morphological analysis of the synthesized PVA-PPy-Ag nanocomposite films was carried out using Transmission Electron Microscopy (TEM). It was observed in the TEM images that Ag nanoparticles were well dispersed and conjugated in the PVA-PPy matrix. The structure of the produced films was studied by Fourier transform infrared (FTIR) Spectroscopy and X-Ray Diffraction (XRD). X-ray diffraction analysis exhibited the crystalline nature of the silver nanoparticles with a face-centered cubic (fcc) structure. The synthesized PVA-PPy-Ag nanocomposite films can be further utilized as potential material for the fabrication of gas sensors.


[1] Gaytan B. L. S., Cui W. H., Kim Y. J., Polanco M. A. M., Duncan T. V., Fryd M., (2007), Interfacial assembly of nanoparticles in discrete block copolymer aggregates. Angew. Chem. Int. Ed. 46: 9235–9238.

[2] Oren R., Liang Z., Barnard J. S., Warren S. C., Wiesner U., Huck W. T. S., (2009), Organization of nanoparticles in polymer brushes. J. Am. Chem. Soc.131: 1670–1671.

[3] Vernitskaya T. V., Efimov O. N., (1997), Polypyrrole: A conducting polymer; its synthesis, properties and applications. Russian Chem. Rev.  66: 443 – 457.

[4] Ansari R., (2006), Polypyrrole conducting electroactive polymers: Synthesis and stability studies. E-J. Chem. 3: 186–201.

[5] Wang L., Li X., Yang Y, (2001), Preparation, properties, and applications of polypyrroles. Reactive and Func. Polym.  47: 125–139.

[6] Grabar K. C., Freeman R. G., Hommer M. B., Natan M. J., (1995), Preparation and characterization of Au colloidal monolayers. Anal. Chem. 67: 735–743.

[7] Solomon S. D., Bahadory M., Jeyarajasingam A. V., Rutkowsky S. A., Boritz C., (2007), Synthesis and study of silver nanoparticles.  J. Chem. Educ.  84: 322–325.

[8] Son S. U., Park I. K., Park J., Hyeon T., (2004), Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides. Chem. Commun. 1: 778–779.

[9] Camargo P. H. C., Satyanarayana K. G., Wypych F., (2009), Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 12: 1–39.

[10] Takeoka H., Hamasaki H., Harada Y., Nakamura Y., Fujii S., (2015), Synthesis and characterization of polypyrrole-platinum nanocomposite-coated latex particles. Colloid and Polym. Sci. 293: 1483–1493.

[11] Cho S. H., Park S. M., (2006), Electrochemistry of conductive polymers contacts between conducting polymers and noble metal nanoparticles studied by current-sensing atomic force microscopy. J. Phys. Chem. B. 110: 25656–25664.

[12] Yang X., Li L., Yana F., (2010), Polypyrrole/silver composite nanotubes for gas sensors. Sensors and Actuat. B. 145: 495–500.

[13] Zang L., Qiu J., Yang C., Sakai E., (2016), Preparation and application of conducting polymer/Ag/clay composite nanoparticles formed by in situ UV-induced dispersion polymerization. Scientif. Rep.  6: 20470-20476.

[14] Pillalamarri S. K., Blum F. D., Tokuhiro A. T., Bertino M. F., (2005),  One-pot synthesis of polyaniline-metal nanocomposites. Chem. Mater.17:  5941–5944.

[15] Kinyanjui J. M., Hatchett D. W., (2004), Chemical synthesis of a polyaniline/gold composite using tetrachloroaurate. Chem. Mater. 16: 3390–3398.

[16] Benseddik E., Makhlouki M., Lefrant S., Profic A., (1995), XPS studies of environmental stability of polypyrrole-poly (vinyl alcohol) composites. Synth. Metals. 72: 237–242.

[17] Srivastava J., Khanna P. K., More P. V., Singh N., (2017), Chemically synthesized Ag/PPy-PVA polymer nanocomposite films as potential EMI shielding material In X-band. Adv. Mater. Lett.  8: 42-48.

[18] Sankaran S., Deshmukh K.,  Basheer M.,  Khadheer Pasha S. K., (2018), Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Compos. Part A: Appl. Sci.Manufact. 114: 49-71.

[19] Jadhav V. P., Chakraborty C. T., Nerkar D. M., (2018), Nanoparticle-embedded polymer reparation and characterization of  PVA-PPy-Au nanocomposite free standing films.  IJSRR. 7: 136-147.

[20] Turkevich J., Stevenson P. C., Hillier J., (1951), A Study of the nucleation and growth processes in the synthesis of colloidal gold. J. Discuss. Faraday Soc. 11: 55-75.

[21] Kulkarni S. K., (2015), Nanotechnology: Principles and Practices, Springer.

[22] Dong P. V., Ha C. H., Binh L. T, (2012),  Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int. Nano Lett. 2: 1-9.

[23] Agnihotri S., Mukherji S., Mukherji S., (2013), Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy.  RSC Adv. 4: 3974-3989.

[24]Solomon S. D., Bahadory M., Jeyarajasingam A. V., Rutkowsky S. A., Boritz C., (2007), Synthesis and study of silver nanoparticles. J. Chem. Educ. 84: 322–325.

[25] Kholoud M. M., El-Nour A., Eftaiha A., Al-Warthan A., Ammar A. A., (2010), Synthesis and applications of silver nanoparticles.  Arab. J. Chem. 3: 135–140.

[26] Pillai Z. S., Kamat P. V., (2004), What factors control the size and shape of silver nanoparticles in the citrate ion reduction method. J.Phys. Chem. B. 108: 945–951.

[27] Wiley B. J., Im S. H., Li Z. Y., McLellan J., Siekkinen A., Xia Y., (2006), Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B. 110: 15666-15675.

[28] Kate K. H., Singh K., Khanna P. K., (2011), Microwave formation of polypyrrole/Ag nano-composite based on interfacial polymerization by use of AgNO3. Synth. React. Inorg. Metal-Organic, and Nano-Metal Chem. 41: 199–202.

[29] Ye S., Lu Y., (2008), Optical properties of Ag@Polypyrrole nanoparticles calculated by Mie theory. J. Phys. Chem. C. 112: 8767–8772.

[30] Mani U., Dhanasingh S., Arunachalam R., Paul E., Shanmugam P., Mandal A. B., (2013), A simple and green method for the synthesis of silver nanoparticles using ricinus communis leaf extract. Prog. Nanotech. Nanomater. 2: 21–25.

[31] Kharat H. J., Kakde K. P., Savale P. A., Datta K., Ghosh P., Shirsat M. D., (2007), Synthesis of polypyrrole films for the development of ammonia sensor. Polym. Adv. Technol. 18: 397–402.

[32] Joshi A, Gangal S. A., Gupta S. K., (2011), Ammonia sensing properties of polypyrrole thin films at room temperature.  Sens.Actuat. B. 156: 938–941.

[33] Nerkar D. M., Panse S. V., Patil S. P., Jaware S. E., (2016), Development of room temperature operating NH3 gas sensor based on free standing PPy-PVA composite films. Int. J. Sci. Res. 5: 2582-2588.

[34] Bhat N. V., Nate M. M., Kurup M. B., Bambole V. A., Sabharwal S., (2005), Effect of g-radiation on the structure and morphology of polyvinyl alcohol films. Nuclear Inst. Methods in Phys. Res. B. 237: 585–592.

[35] Hema M., Selvasekarapandian S., Arunkumar D., Sakunthala A., Nithya H., (2009), FTIR, XRD and ac impedance spectroscopic study on PVA based polymer electrolyte doped with NH4X (X=Cl, Br, I). J. Non- Crystall. Solids. 355: 84–90.

[36] Chitte H. K., Bhat N. V., Walunj V. E., Shinde G. N., (2011), Synthesis of polypyrrole using ferric chloride (FeCl3) as oxidant together with some dopants for use in gas sensors. J. Sensor Technol. 1: 47-56.

[37] Goswami L., Sarma N. S., Chowdhury D., (2011), Determining the ionic and electronic contribution in conductivity of polypyrrole/Au nanocomposites. J. Phys. Chem. C. 115: 19668-19675.

[38] Sakthivel S., Boopathi A., (2014), Synthesis and characterization of polypyrrole (PPy) thin film by spin coating technique. J. Chem. Chem. Sci. 4: 150–155.

[39] Cullity B. D., (1956), Elements of X-Ray diffraction (First Edition), Addison-Wesley Publishing Company Inc.

[40] Li B., Xu Y., Chen J., Chen G., Zhao C., Qian X., Wang M, (2009), Synthesis and characterization of Ag/PPy composite films via enhanced redox reaction of metal ions. Appl. Surf. Sci. 256: 235–238.

[41] Kate K. H., Damkale S. R., Khanna P. K., Jain G. H., (2011), Nanosilver mediated polymerization of pyrrole: Synthesis and gas sensing properties of Polypyrrole (PPy)/Ag nano-composite. J. Nanosc. Nanotechnol. 11: 7863–7869.