Computational study of bandgap-engineered Graphene nano ribbon tunneling field-effect transistor (BE-GNR-TFET)

Document Type: Reasearch Paper

Authors

Department of Electrical Engineering, Nour Branch, Islamic Azad University, Nour, Iran.

Abstract

By applying tensile local uniaxial strain on 5 nm of drain region and compressive local uniaxial strain on 2.5 nm of source and 2.5 nm of channel regions of graphene nanoribbon tunneling field-effect transistor (GNR-TFET), we propose a new bandgap-engineered (BE) GNR-TFET. Simulation of the suggested device is done based on non-equilibrium Green’s function (NEGF) method by a mode-space approach. Simulation results show that, compared to the conventional GNR-TFET, the BE-GNR-TFET enjoys from a better am-bipolar behavior and a higher on-current. Besides, the analog characteristic of the proposed structure such as transconductance (gm) and unity-gain frequency (ft) is also improved.

Keywords


[1] Arden W. M., (2002), The international technology roadmap for semiconductors—perspectives and challenges for the next 15 years. Current Opin. Solid State and Mater. Sci. 6: 371-377.

[2] Zhao H., Chen Y., Wang Y., Zhou F., Xue F., Lee J., (2011), InGaAs tunneling field-effect-transistors with atomic-layer-deposited gate oxides. IEEE Transact. Elect. Dev. 58: 2990-2995.

[3] Ionescu A. M., Riel H., (2011), Tunnel field-effect transistors as energy-efficient electronic switches. Nature. 479: 329-337.

[4] Seabaugh A. C., Zhang Q., (2010), Low-voltage tunnel transistors for beyond CMOS logic. Proceed. IEEE. 98: 2095-2110.

[5] Lv Y., Qin W., Wang C., Liao L., Liu X., (2019), Recent advances in low‐dimensional heterojunction‐based tunnel field effect transistors. Adv. Electron. Mater. 5: 1800569-1800573.

[6] Kim S., Luisier M., Boykin T. B., Klimeck G., (2014), Computational study of heterojunction graphene nanoribbon tunneling transistors with pd orbital tight-binding method. Appl. Phys. Lett. 104: 243113-243119.

[7] Celis A., Nair M. N., Taleb-Ibrahimi A., Conrad E. H., Berger C., De Heer W. A., Tejeda A., (2016), Graphene nanoribbons: fabrication, properties and devices. J. Phys. D: Appl. Phys. 49: 143001-143007.

[8] Gunlycke D., White C. T., (2008), Tight-binding energy dispersions of armchair-edge graphene nanostrips. Phys. Rev. B. 77: 115116-115121.

[9] Ghoreishi S. S., Saghafi K., Yousefi R., Moravvej-Farshi M. K., (2016), A novel tunneling graphene nano ribbon field effect transistor with dual material gate: Numerical studies. Superlatt. Microstruct. 97: 277-286.

[10] Naderi A., (2015), Theoretical analysis of a novel dual gate metal–graphene nanoribbon field effect transistor. Mater. Sci. Semiconduc. Process. 31: 223-228.

[11] Faraji M., Ghoreishi S. S., Yousefi R., (2018), Gate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET). Int. J. Nano Dimens. 9: 32-40.

[12] Ghoreishi S. S., Saghafi K., Yousefi R., Moravvej-Farshi M. K., (2014), Graphene nanoribbon tunnel field effect transistor with lightly doped drain: Numerical simulations. Superlatt. Microstruc. 75: 245-256.

[13] Tahaei S. H., Ghoreishi S. S., Yousefi R., Aderang H., (2019), A computational study of a carbon nanotube junctionless tunneling field-effect transistor (CNT-JLTFET) based on the charge plasma concept. Superlatt. Microstruct. 125: 168-176.

[14] Ghoreishi S. S., Yousefi R., Taghavi, N., (2017), Performance evaluation and design considerations of electrically activated drain extension tunneling GNRFET: A quantum simulation study. J. Electronic. Mater. 46: 6508-6517.

[15] Tamersit K., (2019), A new ultra-scaled graphene nanoribbon junctionless tunneling field-effect transistor: Proposal, quantum simulation, and analysis. J. Comput. Electron. 1-7.

[16] Yousefi R., Saghafi K., Moravvej-Farshi M. K., (2010), Numerical study of lightly doped drain and source carbon nanotube field effect transistors. IEEE Transact. Electron Dev. 57: 765-771.

[17] Lee C., Wei X., Kysar J. W., Hone J., (2008), Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 321: 385-388.

[18] Guinea F., Katsnelson M. I., Geim A. K., (2010), Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nature Phys. 6: 30-33.

[19] Liang G., Neophytou N., Lundstrom M. S., Nikonov D. E., (2007), Ballistic graphene nanoribbon metal-oxide-semiconductor field-effect transistors: A full real-space quantum transport simulation. J. Appl. Phys. 102: 054307-054311.

[20] Zhao P., Guo J., (2009), Modeling edge effects in graphene nanoribbon field-effect transistors with real and mode space methods. J. Appl. Phys. 105: 034503-03457.

[21] Yousefi R., Shabani M., Arjmandi M., Ghoreishi S. S., (2013), A computational study on electrical characteristics of a novel band-to-band tunneling graphene nanoribbon FET. Superlatt. Microstruct.60: 169-178.

[22] Harrison W. A., (1989), Electronic structure and the properties of solids: The physics of the chemical bond. Courier Corporation. (Dover Books on Physics) Paperback – July 1.

[23] Yang L., Anantram M. P., Han J., Lu J. P., (1999), Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain. Phys. Rev. B. 60: 13874-13881.

[24] Yoon Y., Guo J., (2007), Analysis of strain effects in ballistic carbon nanotube FETs. IEEE Transact. Electron Dev. 54: 1280-1287.