Design of a new asymmetric waveguide in InP-Based multi-quantum well laser

Document Type: Reasearch Paper


1 Department of Engineering Sciences, Faculty of Technology and Engineering East of Guilan, University of Guilan, Rudsar-Vajargah, Iran.

2 Plasma & Nuclear Fusion Research School, Nuclear Science & Technology Research Institute, Tehran, Iran.


Today, electron leakage in InP-based separate confinement laser diode has a serious effect on device performance. Control of electron leakage current is the aim of many studies in semiconductor laser industry. In this study, for the first time, a new asymmetric waveguide structure with n-interlayer for a 1.325 μm InP-based laser diode with InGaAsP multi-quantum well is proposed and theoretically analyzed using the PICS3D simulation software. The simulator self-consistently combines the 3D simulation of carrier transport, self-heating, and optical waveguiding. Through the simulation, the optical and electrical performances of laser diodes with symmetric and asymmetric waveguides are studied. Numerical simulation reveals that the asymmetric structure exhibits higher output light power, slope efficiency, emission intensity, and series resistance, as well as lower electron leakage and threshold current density under identical conditions, compared with the symmetric structure. The performances are greatly enhanced in the laser diode with asymmetric waveguide design because of the improved radiative stimulated recombination rate, declined non-radiative Auger recombination rate and decreased overlap between the optical wave and the p-doped layer.


[1]     Piprek J., (2019), On the reliability of pulse power saturation models for broad area GaAs‑based lasers. Opt. Quant. Electron. 51: 60-66.

[2]     Abbasi S., Mahdieh M., (2019), Improvement of AlGaInAs/AlGaAs laser diode electro-optics characteristics by graded refractive index profile broadened waveguide. Opt. Laser Technol. 116: 155-159.

[3]        Li X., ZhaoD., Jiang D., ChenP., Liu Z., Zhu Ji., Shi M., ZhaoD., Liu W., (2016),Suppression of electron leakage in 808 nm laser diodes with asymmetric waveguide layer. J. Semicond. 37: 014007-014011.

[4]     Wu Y. F., J. C. Lee., (2017), Performance of nanostructures within InGaN-based multi-quantum-well light-emitting devices. Appl. Sci. 7: 380-387.

[5]     Qiao  Z., Tang  X., Lee  E., Lim  P.,  Bo B. X., (2013), Large energy band-gap tuning of 980nm InGaAs/InGaAsP quantum well structure via quantum well intermixing. Solid State Electron. 79: 281-286.

[6]     Zubov F. I., Maximov M. V., Shernyakov Yu. M., Kryzhanovskaya N. V., Semenova E. S., Yvind K., Asryan L. V., Zhukov A. E., (2015), Suppression of sublinearity of light–current curve in 850 nm quantum well laser with asymmetric barrier layers. Electron. Lett. 51: 1106-1111.

[7]     Gordeev N. Y., Maximov M. V., Zhukov A. E., (2017), Transverse mode tailoring in diode lasers based on coupled large optical cavities. Laser Phys. 27: 086201-086207.

[8]     Liu X., ‎ Zhao W., Xiong L., Liu H., (2015),Packaging of high power semiconductor laser. Springer. ISBN 978-1-4614-9263-4.

[9]     Kwak J., Park J., Park J., Baek K., Choi A., T. Kim., (2019), 940-nm 350-mW transverse single-mode laser diode with AlGaAs/InGaAs GRIN-SCH and asymmetric structure. Curr. Opt. Photonics. 3: 583-589.

[10] Caggiano A., Marzano A., Teti R., (2016), Enhancement of a turbine vane manufacturing cell through digital simulation-based design. Energies. 9: 790-798.

[11] Huanga J., Evansa G., Butlera J., Jiangb L., Youngb P., Phanb D., Smithc D., (2017), Broadened waveguide laser structures at 780 nm. Proc. SPIE. 10086: 100860.

[12] Qing K., Shao-Yang T., Dan L., Rui-Kang Z., Wei W., Chen J., (2015),Optimization of high power 1.55-m single lateral mode fabry–perot ridge waveguide lasers. Chin. Phys. Lett. 32: 064203-064208.

[13] Qing K., Shaoyang T., Songtao L., Dan L., Ruikang Z., Wei W., Chen J., (2015), Fabrication and optimization of 1.55-m InGaAsP/InP high-power semiconductor diode laser. J. Semicond. 36: 094010-094016.

[14] Shen C. C., Hsu T. C., Yeh Y. W., Kang C. Y., Lu Y. T., Lin H. W., Tseng H. Y., Chen Y. T., Chen C. Y., Lin C. C., Wu C. H., Lee P. T., Sheng Y., Chiu C. H., Kuo H. C., (2019), Design, modeling, and fabrication of high-speed VCSEL with data rate up to 50 Gb/s.Nanoscale Res. Lett. 14: 276-282.

[15] Danesh Kaftroudi Z., (2019), Improving blue InGaN laser diodes performance with waveguide structure engineering. J. Optoelec. Nanostruc. 4: 1-8.

[16] Hisham H. K., (2018), Fiber optic telecommunication, fundamentals of photonics. Am. J. Remote Sensing.  6: 239-246.

[17] Zhang J., Nan J., Du W., Chu Y., Luo H., (2016), Dynamic analysis for a fractional-order autonomous chaotic system. Discrete Dyn. Nat. Soc. Article ID 8712496 | 13 pages.

[18] Ahmed W. W., Kumar S., Medina J., Botey M., Herrero R., Staliunas K., (2018), Stabilization of broad-areafor semiconductor laser sources by simultaneous index and pump modulations. Opt. Lett. 43: 2511-2518.

[19] Xia M., Ghafouri-Shiraz H., (2015), A new optical gain model for quantum wells based on quantum well transmission line modeling method. IEEE J. Quantum Electron. 51: Article Sequence Number: 2500108.

[20] Yadav R., Lal P., Rahman F., Dalela S., Alvi P. A., (2014), Investigation of material gain of In0.90Ga0.10As0.59P0.41/InP lasing nano-heterostructure. Int. J. Mod. Phys. B. 28: 1450068.

[21] Yadav R., Lal P., Rahman F., Dalela S., Alvi P. A., (2014), Well width effects on material gain and lasing wavelength in InGaAsP/InP nano heterostructure. J. Optoelectro. Engin. 2: 1-6.

[22] Yi-Wei M., Yao W., Yang-Hua C., Zheng-Qun X., Qi L., Yan-Min D., Hui S., (2012), Characteristic optimization of 1.3 μm high-speed MQW InGaAsP-AlGaInAs lasers. Chin. Phys. Lett. 29: 064204-064209.

[23] Cai X., Li S., Kang J., (2016), Improved characteristics of ultraviolet AlGaN multiple-quantum-well laser diodes with step-graded quantum barriers close to waveguide layers. Superlattice. Microst. 97: 1-7.

[24]   Underwood J. K., Briggs A. F., Sifferman S. D., Bank S. R., Gopinath J. T.,    (2018), Auger recombination in mid-infrared active regions. CLEO: Appl. Technol.Paper JTh2A.85.

[25] Edward Rees P., (2017), Characterisation of the waveguide dependence of optical mode loss in semiconductor lasers, cardiff university school of physics and astronomy. ISNI: 0000 0004 6496 305X.

[26] Khan M. Z. M., Alhashim H. H., Ng T. K., Ooi B. S., (2015), High-power and high-efficiency 1.3µm superluminescent diode with flat-top and ultra wide emissionbandwidth. IEEE Photon. J. 7: 1600308.

[27] Arai M., Kobayashi W., Kohtoku M., (2013), 1.3 μm range metamorphic InGaAs laser with high characteristic temperature for low power consumption operation. IEEE J. Sel. Top. Quantum Electron. 19: 1502207.

[28] Cataldo E., Lieto A. D., Maccarrone F., Paffuti G.,(2016), Measurements and analysis of current–voltage characteristic of a p-n diode for an undergraduate physics laboratory. Cornel University. arXiv:1608.05638.