Biosynthesis of Silver nanoparticles and investigation of genotoxic effects and antimicrobial activity

Document Type: Reasearch Paper


1 Department of Food Technology, Erzurum Vocational Collage, Ataturk University, 25240, Erzurum, Turkey.

2 Department of Nano-Science and Nano-Engineering, Institute of Science and Technology, Ataturk University, 25240 Erzurum, Turkey.

3 Department of Nursing, Faculty of Health Sciences, Sakarya University of Applied Sciences, 54187, Sakarya, Turkey.

4 Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Agri İbrahim Cecen University, 04000, Agrı, Turkey.

5 Ahi Evran University, Faculty of Agriculture, Department of Field Corps, 40200 Kırsehir, Turkey.

6 Department of Biology, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey.


Health risk assessment of nanomaterials is a new and important area emerging; obtaining nanoparticles by green synthesis method and performing cytotoxicity, genotoxicity and antimicrobial testing is an important endpoint. In vitro studies for nanoparticles (NPs) obtained by the non-toxic method offer many advantages, such as the study of the bioavailability of nanomaterials to sensitive target cells. It will be useful for investigating the toxic and genotoxic risks associated with nanoparticle exposure. In this study; silver nanoparticles (AgNPs) were synthesized by green synthesis using grape vinegar prepared by ourselves. The resulting Ag NPs were characterized using Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) methods and for different AgNPs concentrations in the range of 5-60 nm. The genotoxic effects of AgNPs were investigated using the Sister chromatid exchange (SCE) test and Micronucleus (MN) tests. Furthermore, the antibacterial and antifungal activities of the synthesized compound were tested against some pathogenic bacteria which are causative agents of the disease. As a result; it was found that the synthesized compound showed different degrees of inhibitory effect on the growth of pathogen strains compared to standard antibiotics. The findings are thought to provide clinically useful information in the treatment of many diseases using AgNPs at optimum concentrations (non-genotoxic concentrations).


1.        De Gaetano F., Ambrosio L., Raucci M.G., Catauro M., (2005), Sol-gel processing of drug delivery materials and release kinetics. J. Mater. Sci. Mater. Med. 16: 261–265.

2.        Zhao G., Stevens E., (1998), Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the Ag-NPs ion. Biometals. 11: 27–32.

3.        Devaux X., Laurent C., Rousset A., (1993), Chemical synthesis of metal nanoparticles dispersed in alumina. Nanostruc. Mater. 2: 339–346.

4.        Karaduman I., Güngör A. A., Nadaroğlu A., Altundas A., Acar S., (2017), Green synthesis of γ-Fe2O3 nanoparticles for methane gas sensing. J. Mater. Sci. Mater. Electron. 28: 16094–16105.

5.        Nadaroglu H., Ince S., Gungor A. A., (2017), Green synthesis of gold nanoparticles using quail egg yolk and investigation of potential application areas. Green Process Synth.  Doi:10.1515/gps-2016-0091.

6.        Nadaroglu H., Gungor A. A., Ince S., Babagil A., (2017), Green synthesis and characterisation of platinum nanoparticles using quail egg yolk. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 5: 43-47.

7.        Demirci Gültekin D., Alaylı Güngör A.,Önem H., Babagil A., Nadaroglu H., (2017), Synthesis of copper nanoparticles using a different method: Determination of its antioxidant and antimicrobial activity. J. Turkish Chem. Soc. Sect. A Chem. 3: 623-636.

8.        Singhal G., Bhavesh R., Kasariya K., Sharma A. R., Singh R. P., (2011), Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanoparticules Res. 13: 2981–2988.

9.        Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S. R., Khan M. I., Parischa R., Ajaykumar P. V., Alam M., Kumar R., Sastry M., (2001), Fungus-mediated synthesis of Ag-NPs nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett. 1: 515–519.

10.      Spring S., Schleifer K-H., (1995), Diversity of magnetotactic bacteria. Syst. Appl. Microbiol. 18: 147-153.

11.      Jiang H, Manolache S., Wong A. C. L., Denes F. S., (2004), Plasma-enhanced deposition of Ag-NPs nanoparticles onto polymer and metal surfaces for the generation of antimicrobial characteristics. J. Appl. Polym. Sci. 93: 1411–1422.

12.      Duran N., Marcato P. D., Alves O. L., Souza G. I. H. D., (2005), Mechanistic aspects of biosynthesis of Ag-NPs nanoparticles by several Fusarium oxysporum strains. J. Nanobiotech. 3: 8-12.

13.      Becker R. O., (1999), Ag-NPs ions in the treatment of local infections. Met. Based Drugs. 6: 311–314.

14.      Klaus T., Olsson E., (1999), Ag-NPs -based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. 96: 13611–13614.

15.      Patlolla A. K., Hackett D., Tchounwou P. B., (2015), Genotoxicity study of silver nanoparticles in bone marrow cells of Sprague-Dawley rats. Food Chem. Toxicol. 85: 52–60.

16.      Kim Y. S., Kim J. S., Cho H. S., Rha D. S., Kim J. M., Park J. D., Choi B. S., Lim R., Chang H. K., Chung Y. H., Kwon I. H., Jeong J., Han B. S., Yu I. J., (2008), Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal. Toxicol. 20: 575–583.

17.      Foldbjerg R., Dang D. A., Autrup H., (2011), Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line A549. Arch. Toxicol. 85: 743–750.

18.      Fenech, M., (2000), The in vitro micronucleus technique. Mutat. Res. Mol. Mech. Mutagen. 455: 81–95.

19.      Orhan F., Çeker S., Anar M., Agar G., Arasoglu T., Gulluce M., (2016), Protective effects of three luteolin derivatives on aflatoxin B 1-induced genotoxicity on human blood cells. Med. Chem. Res. 25: 2567–2577.

20.      Anar M., Aslan A., Ceker S., Kızıl H. E., Alpsoy L., Agar G., (2015), Determination of antigenotoxic effects of four lichen species by using human lymphocytes. Fresenius Environ. Bull. 24: 4251–4256.

21.      Perry P., Evans H. J., (1975), Cytological detection of mutagen-carcinogen exposure by sister chromatid exchange. Nature. 258: 121–125.

22.      Ceker S., Orhan F., Kizil H. E., Alpsoy L., Agar G., Aslan A., Agar G., (2015), Genotoxic and antigenotoxic potentials of two Usnea species. Toxicol Indust. Heal. 31: 990-999.

23.      Stick H. F., Dunn B. P., (1986), Relationship between cellular levels of beta-carotene and sensitivity to genotoxic agents. Int. J. Cancer. 38: 713–717.

24.      Schillinger U., Lucke F. K., (1989), Antimicrobial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol. 55: 1901–1906.

25.      Kolhe N. H., Jadhav S. S., (2018), Synthesis, characterization and biological activity of mixed ligands complexes of quinolin-8-ol and substituted chromones with Mn(II), Co(II), Ni(II) and Cu(II) metal ions. Res. Chem. Intermed. 45: 973–996.

26.      Almeida C. G. de, Reis S. G., Almeida A. M. de, Diniz C. G., da Silva V. L., Le Hyaric M., (2011), Synthesis and antibacterial activity of aromaticand heteroaromatic amino alcohols. Chem. Biol. Drug Des. 78: 876–880.

27.      Nithya C., Gnanalakshmi B., Pandian S. K., (2011), Assessment and characterization of heavy metal resistance in Palk Bay sediment bacteria. Mar. Environ. Res. 71: 283–294.

28.      Nartop D., Özkan E. H., Gündem M., Ceker S., Agar G., Ogutcu H., Sari N., (2019), Synthesis, antimicrobial and antimutagenic effects of novel polymeric-Schiff bases including indol. J. Mol. Struct. 1195: 877–882.

29.      Magaldi S., Mata-Essayag S., Hartung De Capriles C., Perez C., Colella M. T., Olaizola C., Ontiveros Y., (2004), Well diffusion for antifungal susceptibility testing. Int. J. Infect. Dis. 8: 39–45.

30.      Balouiri M., Sadiki M., Ibnsouda S. K., (2016), Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6: 71–79.

31.      Valgas C., Souza S. M. De, Smânia E. F. A., Smania A., (2007), Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 38: 369–380.

32.      Xiang Y., Liu X., Mao C., Liu X., Cui Z., Yang X., Yeung K. W. K., Zheng Y., Wu S., (2018), Infection-prevention on Ti implants by controlled drug release from folic acid/ZnO quantum dots sealed titania nanotubes. Mater. Sci. Eng. C. 85: 214–224.

33.      Zhu Y., Liu X., Yeung K. W. K., Chu P. K., Wu S., (2017), Biofunctionalization of carbon nanotubes/chitosan hybrids on Ti implants by atom layer deposited ZnO nanostructures. Appl. Surf. Sci. 400: 14–23.

34.      Mao C., Xiang Y., Liu X., Cui Z., Yang X., Yeung K. W. K., Pan H., Wang X., Chu P. K., Wu S., (2017), Photo-Inspired antibacterial activity and wound healing acceleration by hydrogel embedded with Ag/Ag@AgCl/ZnO nanostructures. ACS Nano. 11: 9010–9021.

35.      Cicek S., Gungor A. A., Adiguzel A., Nadaroglu H., (2015), Biochemical evaluation and green synthesis of nano silver using peroxidase from Euphorbia (Euphorbia amygdaloides) and its antibacterial activity. J. Chem. 2015: Article ID: 486948, 7 pages.

36.      Padalia H., Moteriya P., Chanda S., (2015), Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab. J. Chem. 8: 732–741.

37.      Kokila T., Ramesh P. S., Geetha D., (2015), Biosynthesis of silver nanoparticles from Cavendish banana peel extract and its antibacterial and free radical scavenging assay: A novel biological approach. Appl. Nanosci. 5: 911–920.

38.      Ghotekar S., Savale A., Pansambal S., (2018), Phytofabrication of fluorescent silver nanoparticles from Leucaena leucocephala L. leaves and their biological activities. J Water Environ. Nanotechnol. 3: 95–105.

39.      Roy A., Bulut O., Some S., Mandal A. K., Yilmaz M. D.,  (2019), Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 9: 2673–2702.

40.      Miller J. M., Hair J. G., Hebert M., Hebert L., Robertz F. J. Jr., Weyant R. S., (1997), Fulminating bacteremia and pneumonia due to Bacillus cereus.[erratum appears in J Clin Microbiol 1997 May;35(5):1294]. J. Clin. Microbiol. 35: 504–507.

41.      Pollack M., (1995), Pseudomonas aeruginosa.Mandell G, Bennett J, Dolin R, (eds).: Principles and Practice of Infectious Disease. 1980–2003.

42.      Hanberger H., Garcia Rodriguez J. A., Gobernado M., Goossens H., Nilsson L.E., Struelens M. J., (1999), Antibiotic susceptibility among aerobic gram-negative bacilli in intensive care units in 5 European countries. French Port ICU Study Groups JAMA. 281: 67–71.

43.      Gunseren F., (1999), A surveillance study of antimicrobial resistance of gram-negative bacteria isolated from intensive care units in eight hospitals in Turkey. J. Antimicrob. Chemother. 43: 373–378.

44.      Çetin Ç. B., Yalçın A. N., Turgut H., Cetin B., Tefci F., (1999), Hastane infeksiyonlarında antibiyotik maliyeti. Hastan. İnfeksiyon. Derg. 3: 161–164.

45.      Halling S. M., Peterson-Burch B. D., Bricker B. J., Zuerner R .L., Qing Z., Li L. L., Kapur V., Alt D. P., Olsen S. C., (2005), Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J. Bacteriol. 187: 2715–2726.

46.      Sauret J. M., Vilissova N., (2002), Human brucellosis. J Am. Board Fam. Pract. 15: 401–406.

47.      Ogutcu H., Yetim N. K., Özkan E. H., Eren O., Kaya G., Sari N., Disli A., (2017), Nanospheres caped Pt(II) and Pt (IV): Synthesis and evaluation as antimicrobial and Antifungal Agent. Polish J. Chem. Technol. 19: 74–80.

48.      Koçoğlu S., Ogutcu H., Hayvalı Z., (2019), Photophysical and antimicrobial properties of new double-armed benzo-15-crown-5 ligands and complexes. Res. Chem. Intermed. 45: 2403–2427.

49.      Altundas A., Erdogan Y., Ögütcü H., Kizil H. E., Agar G., (2016), Synthesis and In-vitro Antimicrobial and Anti-mutagenic Activities of some Novel 2-(2-Hydroxybenzylideneamino)-5,7-dihydro-4H-thieno[2,3-c]pyran-3-carbonitrile Derivatives. Fresenius Environ. Bull. 25: 5411–5418.

50.      Ceker S., Ogutcu H., Meral S., Agar A. A., Agar G., (2019), Synthesis, Anti-microbial and anti-mutagenic activities of some schiff bases derivatives containing thiophene group. 32: 2679-2686.

51.      Wise J. P., Goodalea B. C., Wisea S. S., Craig G. A., Pongan A. F., Walter R. B., Thompson W. D., Ng A. K., Aboueissa A. M., Mitani H., Spalding M.J., Mason M. D., (2017), Silver nanospheres are cytotoxic and genotoxic to fish cells. J. Autism. Dev. Disord. 47: 549–562.

52.      Özkan E. H., Kizil H. E., Şakiyan İ., Nartop D., Sari N., Agar G., (2018), Anti-genotoxic Effects of Schiff bases and their Mn (III) Complexes Containing L-Aspartic acid and L-Phenylalanine. Gazi Univ. J. Sci. 31: 408-414.

53.      Bangale S., Ghotekar S., (2019), Bio-fabrication of silver nanoparticles using rosa Chinensis L. extract for antibacterial activities. Int. J. Nano Dimens. 10: 217–224.

54.      Ghotekar S., Pansambal S., Pawar S. P., Pagar T., Oza R., Bangale S., (2019), Biological activities of biogenically synthesized fluorescent silver nanoparticles using Acanthospermum hispidum leaves extract. SN Appl. Sci. 1: 1342-1348.