Thermal synthesis of Hematite nanoparticles: Structural, magnetic and morphological characterizations

Document Type: Reasearch Paper


1 Department of Physics, Institute of Science, Visva-Bharati University, Santiniketan, 731235, India.

2 Institute of Material Science, University of Silesia, Poland.

3 Department of Physics, University of Hradec Králové, Czech Republic.

4 Institute of Physics, University of Silesia, Katowice, Poland.

5 UGC-DAE Consortium for Scientific Research, Mossbauer and MOKE laboratory, Indore, India.


Hematite (α-Fe2O3) nanoparticle was synthesized using organometallic compound - ferrocene carboxaldehyde through solventless solid state thermal decomposition technique. The crystal structure, magnetic and morphological properties of the decomposed material were studied using powder X-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry, 57Fe Mössbauer spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) techniques. Structural study confirmed that the synthesized material is hematite with hexagonal phase and good crystallinity. The temperature-dependent magnetization measurement exhibited the Morin transition - the yardstick for hematite formation. Mössbauer spectroscopic study confirmed the purity of phase of the synthesized material. The SEM study observed mostly the agglomerated tiny particles along with some ring-shaped surface structures. The TEM study of the synthesized material showed that the highest distribution of the particles with ~5 nm size. The observed EDX spectra confirmed the existence of Fe and O in the synthesized material. The solid state reaction process leading to hematite on decomposition of ferrocene carboxaldehyde has also been proposed. Present study describes a simple process for the preparation of pure hematite nanoparticle by solventless method.


1.        Mor G. K., Prakasam H. E., Varghese O. K., Shankar K., Grimes C. A., (2007), Vertically oriented Ti− Fe− O nanotube array films: Toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett. 7: 2356–2364.

2.        El-Sheikh S. M., Harraz F. A., Abdel-Halim K. S., (2009), Catalytic performance of nanostructured iron oxides synthesized by thermal decomposition technique. J. Alloys Compd. 487: 716–723.

3.        Salazar-Alvarez G., Qin J., Sepelak V., Bergmann I., Vasilakaki M., Trohidou K. N., Ardisson J. D., Macedo W. A. A., Mikhaylova M., Muhammed M., (2008), Cubic versus spherical magnetic nanoparticles: The role of surface anisotropy. J. Am. Chem. Soc. 130: 13234–13239.

4.        Tseng W. J., Lin R. -D., (2014), BiFeO3/ α-Fe2O3 core/shell composite particles for fast and selective removal of methyl orange dye in water. J. Colloid Interf. Sci. 428: 95–100.

5.        Cesar I., Kay A., Gonzalez Martinez J. A., Grätzel M., (2006), Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping. J. Am. Chem. Soc. 128: 4582–4583.

6.        Jain G., Balasubramanian M., Xu J. J., (2006), Structural studies of lithium intercalation in a nanocrystalline α-Fe2O3 compound. Chem. Mater. 18: 423–434.

7.        Colombo C., Palumbo G., DiIorio E., Song X., Jiang Z., Liu Q., Angelico R., (2015), Influence of hydrothermal synthesis conditions on size, morphology and colloidal properties of Hematite nanoparticles. Nano-Structures & Nano-Objects. 2: 19–27.

8.        Tadić M., Marković D., Spasojević V., Kusigerski V., Remškar M., Pirnat J., Jagličić Z, (2007), Synthesis and magnetic properties of concentrated α-Fe2O3 nanoparticles in a silica matrix. J. Alloys Compd. 441: 291–296.

9.        Morin F. J., (1950), Magnetic susceptibility of α-Fe2O3 and α-Fe2O3 with added titanium. Phys. Rev. 78: 819-826.

10.      Adler D., (1968), Insulating and metallic states in transition metal oxides. Solid state Phys. (Elsevier), 21: 1–113.

11.      Manukyan K. V., Chen Y.-S., Rouvimov S., Li P., Li X., Dong S., Liu X., Furdyna J. K., Orlov A., Bernstein G. H., (2014), Ultrasmall α-Fe2O3 superparamagnetic nanoparticles with high magnetization prepared by template-assisted combustion process. J. Phys. Chem. C. 118: 16264–16271.

12.      Lin M., Tng L., Lim T., Choo M., Zhang J., Tan H.R., Bai S., (2014), Hydrothermal synthesis of octadecahedral hematite (α-Fe2O3) nanoparticles: An epitaxial growth from goethite (α-FeOOH). J. Phys. Chem. C. 118: 10903–10910.

13.      Lin Y.-M., Abel P. R., Heller A., Mullins C. B., (2011), α-Fe2O3 nanorods as anode material for lithium ion batteries. J. Phys. Chem. Lett. 2: 2885–2891.

14.      Sarkar D., Mandal M., Mandal K., (2013), Design and synthesis of high performance multifunctional ultrathin hematite nanoribbons. ACS Appl. Mater. Interf. 5: 11995–12004.

15.      Jia C., Sun L., Yan Z., You L., Luo F., Han X., Pang Y., Zhang Z., Yan C., (2005), Single crystalline iron oxide nanotubes. Angew. Chemie Int. Ed. 44: 4328–4333.

16.      Liu X., Wang H., Su C., Zhang P., Bai J., (2010), Controlled fabrication and characterization of microspherical FeCO3 and α-Fe2O3. J. Colloid Interf. Sci. 351: 427–432.

17.      Kwon K.-A., Lim H.-S., Sun Y.-K., Suh K.-D., (2014), α-Fe2O3 submicron spheres with hollow and macroporous structures as high-performance anode materials for lithium ion batteries. J. Phys. Chem. C. 118: 2897–2907.

18.      Cai J., Chen S., Ji M., Hu J., Ma Y., Qi L., (2014), Organic additive-free synthesis of mesocrystalline hematite nanoplates via two-dimensional oriented attachment. Cryst. Eng. Comm. 16: 1553–1559.

19.      Bhattacharjee A., Rooj A., Roy M., Kusz J., Gütlich P., (2013), Solventless synthesis of hematite nanoparticles using ferrocene. J. Mater. Sci. 48: 2961–2968.

20.      Kayani Z. N., Afzal A., Butt M. Z., Batool I., Arshad S., Ali Y., Riaz S., Naseem S., (2015), Structural, optical and magnetic properties of iron oxide nano-particles. Mater. Today Proc. 2: 5660–5663.

21.      Xu L., Xia J., Wang K., Wang L., Li H., Xu H., Huang L., He M., (2013), Ionic liquid assisted synthesis and photocatalytic properties of α-Fe2O3 hollow microspheres. Dalt. Trans. 42: 6468–6477.

22.      Khalil N. M., Wahsh M. M. S., Saad E. E., (2015), Hydrothermal extraction of α-Fe2O3 nanocrystallite from hematite ore. J. Ind. Eng. Chem. 21: 1214–1218.

23.      Farahmandjou M., Soflaee F., (2015), Synthesis and characterization of α-Fe2O3 nanoparticles by simple co-precipitation method. Phys. Chem. Res. 3: 191–196.

24.      Diaz C., Barrientos L., Carrillo D., Valdebenito J., Valenzuela M. L., Allende P., Geaney H., O’Dwyer C., (2016), Solvent-less method for efficient photocatalytic α-Fe2O3 nanoparticles using macromolecular polymeric precursors. New J. Chem. 40: 6768–6776.

25.      Dos Santos Monteiro D., Da Guarda Souza M. O., (2016), Thermal decomposition of precursors and iron oxide properties: Influence of promoters (Mn and Cu) and preparation method. J. Therm. Anal. Calorim. 123: 955–963.

26.      De Berti I. O. P., Cagnoli M. V., Pecchi G., Alessandrini J. L., Stewart S. J., Bengoa J. F., Marchetti S. G., (2013), Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors. Nanotechnol. 24: 175601-175607.

27.      Amara D., Grinblat J., Margel S., (2012), Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres. J. Mater. Chem. 22: 2188–2195.

28.      Hermankova P., Hermanek M., Zboril R., (2010), Thermal decomposition of ferric oxalate tetrahydrate in oxidative and inert atmospheres: The role of ferrous oxalate as an intermediate. Eur. J. Inorg. Chem. 7: 1110–1118.

29.      Dey A., Zubko M., Kusz J., Reddy V. R., Banerjee A., Bhattacharjee A., (2019), Solventless synthesis and characterization of α-Fe, γ-Fe, magnetite and hematite using iron(III)citrate. Solid State Sci. 95: 105932-105938.

30.      Herman D. A. J., Cheong-Tilley S., McGrath A. J., McVey B. F. P., Lein M., Tilley R. D., (2015), How to choose a precursor for decomposition solution-phase synthesis: The case of iron nanoparticles. Nanoscale. 7: 5951–5954.

31.      Barreiro A., Hampel S., Rümmeli M. H., Kramberger C., Grüneis A., Biedermann K., Leonhardt A., Gemming T., Büchner B., Bachtold A., (2006), Thermal decomposition of ferrocene as a method for production of single-walled carbon nanotubes without additional carbon sources. J. Phys. Chem. B. 110: 20973–20977.

32.      Sajitha E. P., Prasad V., Subramanyam S. V., Kumar Mishra A., Sarkar S., Bansal C., (2007), Structural, magnetic and Mössbauer studies of iron inclusions in a carbon matrix. J. Magn. Magn. Mater. 313: 329–336.

33.      Elihn K., Landström L., Alm O., Boman M., Heszler P., (2007), Size and structure of nanoparticles formed via ultraviolet photolysis of ferrocene. J. Appl. Phys. 101: 34311-34317.

34.      De Souza A. C., Pires A. T. N., Soldi V., (2002), Thermal stability of ferrocene derivatives and ferrocene-containing polyamides. J. Therm. Anal. Calorim. 70: 405-409.

35.      Shah R., Zhang X. F., An X., Kar S., Talapatra S., (2010), Ferrocene derived carbon nanotubes and their application as electrochemical double layer capacitor electrodes. J. Nanosci. Nanotechnol. 10: 4043–4048.

36.      Saremi-Yarahmadi S., Tahir A. A., Vaidhyanathan B., Wijayantha K. G. U., (2009), Fabrication of nanostructured α-Fe2O3 electrodes using ferrocene for solar hydrogen generation. Mater. Lett. 63: 523–526.

37.      Kim K.-E., Kim K.-J., Jung W. S., Bae S. Y., Park J., Choi J., Choo J., (2005), Investigation on the temperature-dependent growth rate of carbon nanotubes using chemical vapor deposition of ferrocene and acetylene. Chem. Phys. Lett. 401: 459–464.

38.      Elihn K,, Larsson K., (2004), A theoretical study of the thermal fragmentation of ferrocene. Thin Solid Films. 458: 325–329.

39.      Koprinarov N., Konstantinova M., Marinov M., (2010), Ferromagnetic nanomaterials obtained by thermal decomposition of ferrocene. Solid State Phenom. 159: 105–108.

40.      Nasibulin A. G., Shandakov S. D., Anisimov A. S., Gonzalez D., Jiang H., Pudas M., Queipo P., Kauppinen E. I., (2008), Charging of aerosol products during ferrocene vapor decomposition in N2 and CO atmospheres. J. Phys. Chem. C. 112: 5762–5769.

41.      Leonhardt A., Hampel S., Mueller C., Moench I., Koseva R., Ritschel M., Elefant D., Biedermann K., Buechner B., (2006), Synthesis, properties, and applications of ferromagnetic filled carbon nanotubes. Chem. Vap. Depos. 12: 380–387.

42.      Prakash R., Mishra A. K., Roth A., Kübel C., Scherer T., Ghafari M., Hahn H., Fichtner M., (2010), A ferrocene-based carbon–iron lithium fluoride nanocomposite as a stable electrode material in lithium batteries. J. Mater. Chem. 20: 1871–1876.

43.      Das B., Kusz J., Reddy V. R., Zubko M., Bhattacharjee A., (2017), Solventless synthesis, morphology, structure and magnetic properties of iron oxide nanoparticles. Solid State Sci. 74: 62–69.

44.      Das B., Bhattacharjee A., (2018), Kinetic analysis of nonisothermal decomposition of acetyl ferrocene. Int. J. Chem. Kinet. 50: 52-61.

45.      Cullity B. D., Elements of X-Ray Diffraction, (Addison Wesley, Reading, MA, 1978), p. 102.

46.      Snovski R., Grinblat J., Sougrati M. T., Jumas J. C., Margel S., (2014), Synthesis and characterization of iron, iron oxide and iron carbide nanostructures. J. Magn. Magn. Mater. 349: 35–44.

47.      Chandra Kishore S., Pandurangan A., (2013), Synthesis and characterization of Y-shaped carbon nanotubes using Fe/AlPO4 catalyst by CVD. Chem. Eng. J. 222: 472–477.

48.      De Boer C. B., Mullender T. A. T., Dekkers M. J., (2001), Low temperature behaviour of haematite: Susceptibility and magnetization increase on cycling through the Morin transition. Geophys. J. Int. 146: 201–216.

49.      Bhattacharjee A., Roy D., Roy M., Chakraborty S., De A., Kusz J., Hofmeister W., (2010), Rod-like ferrites obtained through thermal degradation of a molecular ferrimagnet. J. Alloys Compd. 503: 449-453.

50.      Eaton J. A., Morrish A. H., (1969), Magnetic domains in hematite at and above the Morin transition. J. Appl. Phys. 40: 3180–3185.

51.      Zhang Y. C., Tang J. Y., Hu X. Y., (2008), Controllable synthesis and magnetic properties of pure hematite and maghemite nanocrystals from a molecular precursor. J. Alloys Compd. 462: 24–28.

52.      Sarangi P. P., Vadera S. R., Patra M. K., Prakash C., Ghosh N. N., (2009), DC electrical resistivity and magnetic property of single phase α-Fe2O3 nanopowder synthesized by a simple chemical method. J. Am. Ceram. Soc. 92: 2425–2428.

53.      Bhattacharjee A., Reiman S., Ksenofontov V., Gütlich P., (2003), Mössbauer spectroscopy under a magnetic field to explore the low-temperature spin structure of the layered ferrimagnetic material—{N(n-C4H9)4[FeIIFeIII(C2O4)3]}. J. Phys. Condens. Matter. 15: 5103-5108.

54.      Lyubutin I. S., Lin C. R., Korzhetskiy Y. V., Dmitrieva T. V., Chiang R. K., (2009), Mössbauer spectroscopy and magnetic properties of hematite/magnetite nanocomposites. J. Appl. Phys. 106: 2–7.

55.      Angermann A., Töpfer J., (2008), Synthesis of magnetite nanoparticles by thermal decomposition of ferrous oxalate dihydrate. J. Mater. Sci. 43: 5123–5130.

56.      Qian W., Chen Q., Cao F., Chen C., (2008), Synthesis and characterization of polyhedral graphite particles. Open Mater. Sci. J. 2: 19–22.