Detecting compressive strain by evaluation of Raman spectroscopy of the multiwall Carbon nanotubes/TiO2 nanocomposites

Document Type: Reasearch Paper

Authors

1 Department of Physics, Shahid Rajaee Teacher Training University, Tehran, Lavizan, P. O. Box 16788-15811, I. R. Iran.

2 Department of Physics, University of Mustansiriyah, Baghdad, IQ, Iraq.

3 Department of Physics, University of Neyshabur, Neyshabur, P. O. Box 9319774400, I. R. Iran.

4 Atomic and Molecular Physics Group, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, P. O. Box 14115-175, I. R. Iran.

Abstract

Functionalized Multi-walled carbon nanotubes (f-MWCNTs) which are modified using nitric acid and sulfuric acid were evaluated to synthesize a uniform nanocomposite via application of TiO2. The f-MWCNTs-TiO2 nanocomposites have been produced via using the chemical simple two-step method. To characterize the structural analysis, scanning electron microscopy (SEM) imaging, ultraviolet-visible (UV-Vis) spectroscopy, and Raman spectroscopy were utilized. The maximum shift of D, G, and 2G-bands of f-MWCNTs were related to 20 wt. % f-MWCNTs in TiO2 nanoparticles. Moreover, an up-shift of 40 cm-1 was recorded for the MWCNTs (G’-band) for 5 wt. % f-MWCNTs. For 20 wt. % f-MWCNTs/TiO2 (G-band) nanocomposites, was determined by 4.7%. By increasing the amount of f-MWCNTs in f-MWCNs/TiO2 nanocomposite, the compressive strain was increased. Among the four bonds, the G’-band behaved differently against increasing f-MWCNTs. The shifting frequency of G-band indicates the strong interaction between f-MWCNTs and TiO2 nanoparticles. The interaction between f-MWCNTs and TiO2 nanoparticles identified by the Gruneisen parameter. Therefore, a mechanism generated for stress transfer at the interface between f-MWCNTs and TiO2 nanoparticles which is indicated in many significant increases obtained in the mechanical and acoustical properties.

Keywords


[1] Alijani H., Tayyebi S., Hajjar Z., Shariatinia Z., Soltanali S., (2017), Prediction of the Carbon nanotube quality using adaptive neuro–fuzzy inference system, Int. J. Nano Dimens. 8: 298-306.

[2] Beitollahi H., Safaei M., Tajik S., (2019), Application of Graphene and Graphene Oxide for modification of electrochemical sensors and biosensors: A review. Int. J. Nano Dimens. 10: 125-140.

[3] Zhang F. J., Chen M. L., Oh W. C., (2010), Photoelectrocatalytic properties of Ag-CNT/TiO2 composite electrodes for methylene blue degradation. New Carbon Mater. 25: 348–356.

[4] Muruganandham M., Shobana N., Swaminathan M., (2006), Optimization of solar photocatalytic degradation conditions of Reactive Yellow 14 azo dye in aqueous TiO2. J. Mol. Catal. A Chem. 246: 154-161.

[5] Kochana J., Adamski J., (2012), Detection of NADH and ethanol at a graphite electrode modified with titania sol-gel/Meldola’s Blue/MWCNT/Nafion nanocomposite film. Cent. Eur. J. Chem. 10: 224-231.

[6] Larijani M. M., Safa S., (2014), Increase of hydrogen storage capacity of CNTs by using transition metal, metal oxide-CNT nanocomposites. Acta Phys. Pol. A. 126: 732-735.

[7] Mohiuddin T. M. G., Lombardo A., Nair R. R., Bonetti A., Savini G., Jalil R., Bonini N., Basko D. M., Galiotis C., Marzari N., Novoselov K. S., Geim A. K., Ferrari A. C., (2009), Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B: Condens. Matter. 79: 205433.

[8] Graupner R., (2007), Raman spectroscopy of covalently functionalized single‐wall carbon nanotubes. J. Raman Spectrosc. 38: 673–683.

[9] Cuesta A., Dhamelincourt P., Laureyns J., Martinez-Alonso A., Tascon J. M. D., (1994), Raman microprobe studies on carbon materials. Carbon. 32: 1523–1532.

[10] Rao A. M., Chen J., Richter E., Schlecht U., Eklund P. C., Haddon R. C., Venkateswaran U. D., Kwon Y. K., Tomanek D., (2001), Effect of van der Waals Interactions on the Raman modes in single walled Carbon nanotubes. Phys. Rev. Lett. 86: 3895–3898.

[11] Bandarian  M., Shojaei A., Rashidi A. M., (2011), Thermal, mechanical and acoustic damping properties of flexible open-cell polyurethane/multi-walled carbon nanotube foams: Effect of surface functionality of nanotubes. Polym. Int. 60: 475-482.

[12] Roy D., Bhattacharyya S., Rachamim A., Plati A., Saboungi M. L., (2010), Measurement of interfacial shear strength in single wall carbon nanotubes reinforced composite using Raman spectroscopy. J. Appl. Phys. 170: 043501.

[13] Ajayan P. M., Suhr J., Koratkar N., (2006), Utilizing interfaces in carbon nanotube reinforced polymer composites for structural damping. J. Mater. Sci. 41: 7824-7829.

[14] Rausch J., Zhuang R. C., Mader E., (2010), Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media. Comp. Part A. 41: 1038-1046.

[15] Tang Q. Y., Shafiq I., Chan Y. C., Wong N. B., Cheung R., (2010), Study of the dispersion and electrical properties of Carbon nanotubes treated by surfactants in Dimethylacetamide. J. Nanosci. Nanotechnol. 10: 4967-4974.

[16] Zhang H. B., Lin G. D., Zhou Z. H., Dong X., Chen T., (2002), Raman spectra of MWCNTs and MWCNT-based H2 adsorbing system. Carbon. 40: 2429-2436.

[17] Corio P., Santos P. S., Brar V. W., Samsonidze Ge. G., Chou S. G., Dresselhaus M. S., (2003), Potential dependent surface Raman spectroscopy of single wall carbon nanotube films on platinum electrodes. Chem. Phys. Lett. 370: 675-682.

[18] Souza Filho A. G., Jorio A., Samsonidze Ge. G., Dresselhaus G., Saito R., Dresselhaus M. S., (2003), Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes. Nanotechnol. 14: 1130-1139.

[19] Dresselhaus M. S., Dresselhaus G., Saito R., Jorio A., (2005), Raman spectroscopy of carbon nanotubes. Phys. Rep. 409: 47-99.

[20] Hadavand B. S., Mahdavi Javid K., Gharagozlou M., (2013), Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite. Mater. Des. 50: 62–67.

[21] Chaudhary D., Singh S., Vankar V. D., Khare N., (2017), A ternary Ag/TiO2/CNT photoanode for efficient photo electrochemical water splitting under visible light irradiation. Int. J. Hydrog. Energy. 42: 7826-7835.

[22] Laurenzi S., Botti S., Rufoloni A., Santonicola M. G., (2014), International symposium on dynamic response and failure of composite materials, DRaF2014 fracture mechanisms in epoxy composites reinforced with carbon nanotubes. Procedia Eng. 88: 157-164.

[23] Hadjiev V. G., Warren G. L., Sun L., Davis D. C., Lagoudas D. C., Sue H. J., (2010), Raman microscopy of residual strains in carbon nanotube/epoxy composites. Carbon. 48: 1750-1756.

[24] McCloy C., McNally T., Brennan G. P., Erskine J., (2007), Thermosetting polyurethane multiwall carbon nanotube composites. J. Appl. Polym. Sci. 105: 1003-1011.

[25] Saito R., Dresselhaus G., Dresselhaus M. S., (1993), Electronic structure of double layer graphene tubules. J. Appl. Phys. 73: 494-500.

[26] Cooper C. A., Young R. J., Halsall M., (2001), Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Composites Part A. 32: 401-411.

[27] Rao A. M., Richter E., Bandow S., Chase B., Eklund P. C., Williams K. A., Fang S., Subbaswamy K. R., Menon M., Thess A., Smalley R. E., Dresselhaus G., Dresselhaus M. S., (1997), Diameter-selective Raman scattering from vibrational modes in Carbon nanotubes. Science. 275: 187-191.

[28] Grimmer C. S., Dharan C. K. H., (2010), Enhancement of delamination fatigue resistance in carbon nanotube reinforced glass fiber/polymer composites. Compos. Sci. Technol. 70: 901-908.

[29] Lee J. E., Ahn G., Shim J., Lee Y. S., Ryu S., (2012), Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3: 1024-1029.

[30] Vejpravova J., Pacakova B., Endres J., Mantlikova A., Verhagen T., Vales V., Frank O., Kalbac M., (2015), Graphene wrinkling induced by monodisperse nanoparticles: Facile control and quantification. Sci. Rep. 5: 15061-15067.