Electronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study

Document Type: Reasearch Paper

Authors

1 Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran.

2 Department of Chemistry, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran.

3 Department of Chemistry, Kabul Polytechnic University, Kabul, Afghanishtan.

4 Departmen of Chemistry, Faryab University, Faryab, Afghanishtan.

Abstract

The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigzag hydrogenated porous graphene nanoribbons are semiconductors. Their energy band gaps depend on the ribbon width and topological shape of carbon atoms at the edges of the nanoribbons. The band gap of the nanoribbons decreases monotonically with increasing the ribbon width. The semiconducting properties of the hydrogenated porous graphene nanoribbons suggest these ribbons as proper materials for use in future nanoelectronic devices.

Keywords


[1] Hofmann R., Hughbanks T., Kertesz M., Bird P. H., (1983), Hypothetical metallic allotrope of carbon. J. Am. Chem. Soc. 105: 4831-4832.

[2] Kroto H. W., Heath J. R., OBrien S. C., Curl R. F., Smalley R. E., (1985), C60: Buckminsterfullerene. Nature. 318: 162-163.

[3] Iijima S., (1991), Helical microtubules of graphitic carbon. Nature. 354: 56-58.

[4] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., (2004), Electric field effect in atomically thin carbon films. Science. 36: 666-669.

[5] Baughman R. H., Eckhardt H., Kertesz M., (1987), Structure‐property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms. J. Chem. Phys. 87: 6687-6699.

[6] Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., Firsov A. A., (2005), Two-dimensional gas of massless Dirac fermions in graphene. Nature. 438: 197-200.

[7] Geim A. K., Novoselov K. S., (2007), The rise of graphene. Nature Mater. 6: 183-191.

[8] Beitollai H., Safaei M., Tajik S., (2019), Application of graphene and graphene oxide for modification of electrochemical sensors and biosensors: A review. Int. J. Nano Dimens.10: 125-140.

[9] Kivrak H. D., Aktas N., Caglar A., (2019), Electrochemical production of graphene oxide and its application as a novel hydrogen peroxide sensor. Int. J. Nano Dimens. 10: 252-259.

[10] Coros M., Pogacean F., Magerusan L., Socaci C., Pruneanu S., (2019), A brief overview on synthesis and applications of graphene and graphene-based nanomaterials. Front. Mater. Sci. 13: 23-32.

[11] Mohan V. B., Lau K. T., Hui D., Bhattacharyya D., (2018), Graphene-based materials and their composites: A review on production, applications and product limitations. Compos. Part B: Eng. 142: 200-220.

[12] Zhang Q., Wu Z., Li N., Pu Y., Wang B., Zhang T., Tao J., (2017), Advanced review of graphene-based nanomaterials in drug delivery systems: Synthesis, modification, toxicity and application. Mat. Sci. Eng. C. 77: 1363-1375.

[13] Yang J., Pingan H., Gui Y., (2019), Perspective of graphene-based electronic devices: Graphene synthesis and diverse applications. APL Mater. 7:020901-020905.

[14] Das T., Sharma B. K., Kaiyar A. K., Ahn J-H., (2018), Graphene-based flexible and wearable electronics. J. Semicond. 39: 011007-011011.

[15] Yung K. C., Wu W. M., Pierpoint M. P., Kusmartsev F. V., (2013), Introduction to graphene electronics: A new era of digital transistors and devices. Contemp. Phys. 54: 233-251.

[16] Geim A. K., (2009), Graphene: Status and prospects. Science. 324: 1530-1534.

[17] Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K. , (2009), The electronic properties of graphene. Rev. Mod. Phys. 81: 109-162.

[18] Jalili S., Majidi R., (2006), The effect of gas adsorption on carbon nanotubes properties. J. Comput. Ther. Nanosci. 3: 664-669.

[19] Flores M. Z. S., Autreto P. A. S., Legoas S. B. , Galvao D. S., (2009), Graphene to graphane: A theoretical study. Nanouechnol. 20: 465704-465709.

[20] Nair R. R., Ren W., Jalil R., Riaz I., Kravets V. G.,  Britnell L.,  Blake P.,  Schedin F.,  Mayorov A. S.,  Yuan S.,  Katsnelson M. I., Cheng H.M. ,  Strupinski W.,  Bulusheva L. G.,  Okotrub A. V.,  Grigorieva I. V.,  Grigorenko A. N.,  Novoselov K. S., Geim A. K., (2010), Fluorographene: A two‐dimensional counterpart of teflon. Small. 6: 2877-2884.

[21] Majidi R., (2016), Band gap modulation of graphyne via chemical functionalization: A density functional theory study. Cand. J. Chem. 94: 229-233.

[22] Majidi R., (2013), Effect of doping on the electronic properties of graphyne. Nano: Brief Rep. Rev. 8: 1350060-1350066.

[23] Majidi R., Karami A. R., (2013), Electronic properties of BN-doped bilayer graphene and graphyne in the presence of electric field. Mol. Phys. 111: 3194-3199.

[24] Paupitz R., Autreto P. A. S., Legoas S. B., Srinivasan S. G., Van Duin A. C. T., Galvao D. S., (2013), Graphene to fluorographene and fluorographane: A theoretical study. Nanotechnol. 24: 035706-035711.

[25] Han M. Y., Ozyilmaz B., Zhang Y., Kim P., (2007), Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98: 206805-206809.

[26] Perim E., Paupitz R., Autreto P. A. S., Galvao D. S., (2014), Inorganic graphenylene: A porous two-dimensional material with tunable band gap. J. Phys. Chem. C. 118: 23670-23674.

[27] Son Y. W., Cohen M. L., Louie S. G., (2006), Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97: 216803-216809.

[28] Lee H., Paeng K., Soo Kim I., (2018), A review of doping modulation in graphene. Synth. Met. 244: 36-47.

[29] Ding Y., Wang Y., Shi S., Tang W., (2011), Electronic structures of porous graphene, BN, and BC2N sheets with one- and two-hydrogen passivations from first principles. J. Phys. Chem. C. 115: 5334-5343.

[30] Penhtao X., Jiziang Y., Kesia W., Zhen Z., Panwen S., (2012), Porous graphene: Properties, preparation, and potential applications. Chinese Sci. Bull. 57: 2948-2955.

[31] Pierre M. D. L., Karamanis P., Baima J., Orlando R., Pouchan C., Dovesi R., (2013), Ab Initio periodic simulation of the spectroscopic and optical properties of novel porous graphene phases. J. Phys. Chem. C. 117: 2222-2229.

[32] Du A., Zhu Z., Smith S. C., (2010), Multifunctional porous graphene for nanoelectronics and hydrogen storage: New properties revealed by first principle calculations. J. Am. Chem. Soc. 132: 2876-2877.

[33] Majidi R., Karami A. R., (2017), Nicotine adsorption on BN porous sheets: A density functional theory study. Rom. Rep. Phys. 69: 503-508.

[34] Majidi R., Saadat M., Davoudi S., (2017), Electronic properties of o-doped porous graphene and biphenylene carbon: A density functional theory study. Rom. Rep. Phys. 69: 509-515.

[35] Denis P. A., (2014), Porous graphitic carbon nitride: A possible metal-free photocatalyst for water splitting. J. Phys. Chem. C. 118: 224976-24982.

[36] Hudspeth M. A., Whitman B. W., Barone V., Peralta J. E., (2010), Electronic properties of the biphenylene sheet and Its one-dimensional derivatives. ACS Nano. 4: 4565-4570.

[37] Ozaki T., Kino H., Yu J., Han M. J., Ohfuti M., Ishii F., Sawada K., Kubota Y., Mizuta Y. P., Ohwaki T., Ohwaki T., Shiihara Y., Toyoda M., Okuno Y., Perez R., Bell P. P., Ellner M., Xiao Y., Kawamura M., Yoshimi K., Lee C.-C., Terakura K., User’s manual of OpenMX version 3.8. http://www.openmx-square.org.

[38] Perdew J. P., Burke K., Wang Y., (1996), Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B. 54: 16533-16538.

[39] Hatanaka M., (2010), Band structures of porous graphenes. Chem. Phys. Lett. 488: 187-192.

[40] Park C. H., Louie S. G., (2008), Energy gaps and stark effect in boron nitride nanoribbons. Nano Lett. 8: 2200-2203.