Experimental investigation on the thermal conductivity of Triethylene Glycol-Water-CuO nanofluids as a desiccant for dehydration process

Document Type: Reasearch Paper

Authors

1 Faculty of Advanced Technologies, NanoChemical Engineering Department, Shiraz University, Shiraz, Iran.

2 Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.

3 Visiting Professor, Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.

Abstract

Liquid desiccants such as glycols are used in dehydration process, among which Triethylene Glycol (TEG) is considered as a common choice. The addition of nanoparticles to TEG as the base fluid is one of the prevalent method to improve thermal properties of TEG. In this study, an experimental investigation was performed on thermal conductivity of TEG-based nanofluids with 20 and 40 nm diameter copper oxide (CuO) nanoparticles analyzed at different conditions. Thermal conductivity was measured using a Decagon thermal analyzer (KD2 Pro Model) in the 20 °C-60 °C temperature range, and also 0.1- 0.9 wt.% range. The experimental results showed that thermal conductivity of the nanofluid enhances with temperature increasing. In addition, thermal conductivity of nanofluids increased with nanoparticle concentration in both cases of 20 and 40 nm nanoparticles. The highest enhancement was also ~ 13.5%, for the nanofluid with 20 nm nanoparticles at 60 °C and a 0.9 wt.% concentration.

Keywords

Main Subjects


1. Rouzbahani A. N., Bahmani M., Shariati J., Tohidian T., Rahimpour M., (2014), Simulation, optimization, and sensitivity analysis of a natural gas dehydration unit. J. Nat. Gas Sci. Eng. 21: 159-169.

2. Ghiasi M. M., Bahadori A., Zendehboudi S., (2014), Estimation of triethylene glycol (TEG) purity in natural gas dehydration units using fuzzy neural network.J. Nat. Gas Sci. Eng. 17: 26-32.

3. Wang X-Q., Mujumdar A. S., (2007), Heat transfer characteristics of nanofluids: A review. Int. J. Therm. Sci. 46: 1-19.

4. Omrani A., Esmaeilzadeh E., Jafari M., Behzadmehr A., (2019), Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diamond Related Mater. 93: 96-104.

5. Duan F., Kwek D., Crivoi A., (2011), Viscosity affected by nanoparticle aggregation in Al2O3-water nanofluids. Nanoscale Res. Lett. 6: 1-8.

6. Dinarvand S., Pop I., (2017), Free-convective flow of copper/water nanofluid about a rotating down-pointing cone using Tiwari-Das nanofluid scheme. Adv. Powder Tech. 28: 900-909.

7. Suramwar N., Thakare S., Khaty N., (2012), Synthesis and catalytic properties of nano CuO prepared by soft chemical method. Int. J. Nano Dimens. 3: 75-79.

8. Azimi H., Taheri R., (2015), Electrical conductivity of CuO nanofluids. Int. J. Nano Dimens. 6: 77-81.

9. Shunmugam M., Gurusamy H., Devarajan P. A., (2017), Investigations on the structural, electrical properties and conduction mechanism of CuO nanoflakes. Int. J. Nano Dimens. 8: 216-223.

10. Rashin M. N., Hemalatha J., (2013), Synthesis and viscosity studies of novel ecofriendly ZnO–coconut oil nanofluid. Exp. Therm. Fluid Sci. 51: 312-318.

11. Pramuanjaroenkij A., Tongkratoke A., Kakaç S., (2018), Numerical study of mixing thermal conductivity models for nanofluid heat transfer enhancement. J. Eng. Phys. Thermophys. 91: 104-114.

12. Liu K., Choi U., Kasza K. E., (1988), Measurements of pressure drop and heat transfer in turbulent pipe flows of particulate slurries. Argonne National Lab. IL (USA).

13. Ahuja A. S., (1975), Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results. J. Appl. Phys. 46: 3408-3416.

14. Xuan Y., Li Q., (2000), Heat transfer enhancement of nanofluids. Int. J. Heat Fluid Flow. 21: 58-64.

15. Chol S., (1995), Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed. 231: 99-106.

16. Eastman J., Choi U., Li S., Thompson L., Lee S., (1996), Enhanced thermal conductivity through the development of nanofluids. In: MRS proceedings, Cambridge Univ Press, p 3.

17. Yang L., Xu J., Du K., Zhang X., (2017), Recent developments on viscosity and thermal conductivity of nanofluids.Powder Tech. 284: 336–343.

18. Moldoveanu G. M., Huminic G., Minea A. A., Huminic A., (2018), Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. Int. J. Heat Mass Transf. 127: 450-457.

19. Alawi O. A., Sidik N. A. C., Xian H. W., Kean T. H., Kazi S., (2018), Thermal conductivity and viscosity models of metallic oxides nanofluids. Int. J. Heat Mass Transf. 116: 1314-1325.

20. Sahooli M., Sabbaghi S., (2013), Investigation of thermal properties of CuO nanoparticles on the ethylene glycol–water mixture. Mater. Lett. 93: 254-257.

21. Afrand M., Toghraie D., Sina N., (2016), Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: Development of a new correlation and modeled by artificial neural network. Int. Commun. Heat Mass Transf. 75: 262-269.

22. Shahsavar A., Khanmohammadi S., Karimipour A., Goodarzi M., (2019), A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: A new approach of GMDH type of neural network. Int. J. Heat Mass Transf. 131: 432-441.

23. Li H., Wang L., He Y., Hu Y., Zhu J., Jiang B., (2015), Experimental investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluids. Appl. Therm. Eng. 88: 363-368.

24. Ouikhalfan M., Labihi A., Belaqziz M., Chehouani H., Benhamou B., Sarı A., Belfkira A., (2019), Stability and thermal conductivity enhancement of aqueous nanofluid based on surfactant-modified TiO2. J. Dispers. Sci. Tech. 1-9.

25. Wei B., Zou C., Li X., (2017), Experimental investigation on stability and thermal conductivity of diathermic oil based TiO2 nanofluids. Int. J. Heat Mass Transf. 104: 537-543.

26. Abdolbaqi M. K., Sidik N. A. C., Rahim M. F. A., Mamat R., Azmi W., Yazid M. N. A. W. M., Najafi G., (2016), Experimental investigation and development of new correlation for thermal conductivity and viscosity of BioGlycol/water based SiO2 nanofluids. Int. Commun. Heat Mass Transf. 77: 54-63.

27. Guo W., Li G., Zheng Y., Dong C., (2018), Measurement of the thermal conductivity of SiO2 nanofluids with an optimized transient hot wire method. Thermochimica Acta. 661: 84-97.

28. Das S. K., Putra N., Thiesen P., Roetzel W., (2003), Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125: 567-574.

29. Kim S. H., Choi S. R., Kim D., (2007), Thermal conductivity of metal-oxide nanofluids: Particle size dependence and effect of laser irradiation. J. Heat Transf. 129: 298-307.

30. Li C. H., Peterson G., (2006), Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J. Appl. Phys. 99: 084314-084319.

31. Beck M. P., Yuan Y., Warrier P., Teja A. S., (2009), The effect of particle size on the thermal conductivity of alumina nanofluids. J. Nanopart. Res. 11: 1129-1136.

32. Vajjha R. S., Das D. K., (2009), Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int. J. Heat Mass Transf. 52: 4675-4682.

33. Shima P., Philip J., Raj B., (2009), Role of microconvection induced by brownian motion of nanoparticles in the enhanced thermal conductivity of stable nanofluids. Appl. Phys. Lett. 94: 223101-223107.

34. Mintsa H. A., Roy G., Nguyen C. T., Doucet D., (2009), New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci. 48: 363-371.

35. Tavman I., Turgut A., Chirtoc M., Hadjov K., Fudym O., Tavman S., (2010), Experimental study on thermal conductivity and viscosity of water-based nanofluids. Heat Transf. Res. 41: 339-351.

36. Esfe M. H., Saedodin S., Wongwises S., Toghraie D., (2015), An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J. Therm. Anal. Calorim. 119: 1817-1824.

37. Afrand M., Toghraie D., Ruhani B., (2016), Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: An experimental study. Exp. Therm. Fluid Sci. 77: 38-44.

38. Afrand M., Toghraie D., Sina N., (2016), Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: Development of a new correlation and modeled by artificial neural network. Int. Commun. Heat Mass Transf. 75: 262-269.

39. Esfahani N. N., Toghraie D., Afrand M., (2018), A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: An experimental study. Powder Tech. 323: 367-373.

40. Vadasz J. J., Govender S., Vadasz P., (2005), Heat transfer enhancement in nano-fluids suspensions: Possible mechanisms and explanations. Int. J. Heat Mass Transf. 48: 2673-2683.

41. Dalkılıç A. S., Yalçın G., Küçükyıldırım B. O., Öztuna S., Eker A. A., Jumpholkul C., Nakkaew S., Wongwises S., (2018), Experimental study on the thermal conductivity of water-based CNT-SiO2 hybrid nanofluids. Int. Commun. Heat Mass Transf. 99: 18-25.

42. Hamid K. A., Azmi W., Nabil M., Mamat R., Sharma K., (2018), Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. Int. J. Heat Mass Transf. 116: 1143-1152.

43. Holman J. P., (2001), Heat transfer, eighth SI metric edition. Mc Gran–Hill Book Company.

44. Keyvani M., Afrand M., Toghraie D., Reiszadeh M., (2018), An experimental study on the thermal conductivity of cerium oxide/ethylene glycol nanofluid: Developing a new correlation. J. Mol. Liq. 266: 211-217.

45. Khedkar R. S., Sonawane S. S., Wasewar K. L., (2012), Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids.Int. Commun. Heat Mass Transf. 39: 665-669.

46. Keblinski P., Phillpot S., Choi S., Eastman J., (2002), Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transf. 45: 855-863.

47. Paul G., Chopkar M., Manna I., Das P., (2010), Techniques for measuring the thermal conductivity of nanofluids: A review. Renew. Sustain. Energy Rev. 14: 1913-1924.

48. Devendiran D. K., Amirtham V. A., (2016), A review on preparation, characterization, properties and applications of nanofluids. Renew. Sustain. Energy Rev. 60: 21-40.

49. Azmi W., Sharma K., Mamat R., Najafi G., Mohamad M., (2016), The enhancement of effective thermal conductivity and effective dynamic viscosity of nanofluids–A review. Renew. Sustain. Energy Rev. 53: 1046-1058.

50. Ansari H., Zarei M., Sabbaghi S., Keshavarz P., (2018), A new comprehensive model for relative viscosity of various nanofluids using feed-forward back-propagation MLP neural networks. Int. Commun. Heat Mass Transf. 91: 158-164.

51. Zarei M., Keshavarz P., Zerafat M., (2017), Dynamic viscosity of triethylene glycol-water-CuO nanofluids as a gas dehydration desiccant. J. Nanofluids. 6: 395-402.

52. Wang X., Xu X., Choi S. U., (1999), Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 13: 474-480.

53. Nan C-W., Shi Z., Lin Y., (2003), A simple model for thermal conductivity of carbon nanotube-based composites. Chem. Phys. Lett. 375: 666-669.

54. Maga S. E. B., Nguyen C. T., Galanis N., Roy G., (2004), Heat transfer behaviours of nanofluids in a uniformly heated tube.Superlat. Microstruct. 35: 543-557.

55. Buongiorno J., (2006), Convective transport in nanofluids. J. Heat Transf. 128: 240-250.

56. Vatani A., Woodfield P. L., Dao D. V., (2015), A survey of practical equations for prediction of effective thermal conductivity of spherical-particle nanofluids. J. Mol. Liq. 211: 712-733.

57. Esfe M. H., Saedodin S., Mahian O., Wongwises S., (2014), Thermal conductivity of Al2O3/water nanofluids.J. Therm. Anal. Cal. 117: 675-681.

58. Harandi S. S., Karimipour A., Afrand M., Akbari M., D'Orazio A., (2016), An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: Effects of temperature and concentration.Int. Commun. Heat Mass Transf. 76: 171-177.

59. Toghraie D., Chaharsoghi V. A., Afrand M., (2016), Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J. Therm. Anal. Cal. 125: 527-535.

60. Esfe M. H., Saedodin S., Yan W-M., Afrand M., Sina N., (2016), Study on thermal conductivity of water-based nanofluids with hybrid suspensions of CNTs/ Al2O3 nanoparticles. J. Therm. Anal. Cal. 124: 455-460.

61. Esfe M. H., Karimipour A., Yan W-M., Akbari M., Safaei M. R., Dahari M., (2015), Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int. J. Heat Mass Transf. 88: 728-734.