Green synthesis, characterization, and photo catalytic degradation efficiency of Trimanganese Tetroxide nanoparticle

Document Type: Reasearch Paper


Nanoscience Research Lab, Dept. of Chemistry, KSMDB College, Sasthamcotta, Kollam PLN-690521, Kerala, India.


Mn3O4 nanoparticles has been synthesised from Manganese (II) acetate and Simarouba Glauca leaf extract using microwave heating. This novel method of synthesis of Mn3O4 is fast, low-cost, non-toxic and environment friendly. The synthesised product was characterised by powder X-ray diffraction(XRD),Fourier transform infrared spectroscopy( FT-IR), Ultraviolet-Visible spectroscopy( UV-Visible), X-ray photoelectron spectroscopy( XPS), Scanning electron microscopy(SEM) and Transmission electron microscopy(TEM). The prepared material was identified as of tetragonal hausmannite crystalline structure with spherical morphology and particle size 15 nm. Photo catalytic degradation ability of the synthesised product was examined by using it for the degradation of Malachite green dye in various experimental conditions under visible light. The synthesised Mn3O4 was found to be an efficient photo catalyst for the removal of Malachite green at the optimum conditions of pH 9, adsorbent dose 0.1 g and dye concentration 20ppm. This study thus reveals the applicability of nanoparticles of Mn3O4 for the removal of pollutants from industrial waste water.


Main Subjects

[1]        Rajeshkannan R., (2011), Decolourization of malachite green-optimization, isotherm and kinetic

              studies.  Chem. Ind. Chem. Eng. 17: 67–79.

[2]        Ali I., Al-Othman Z. A., Alwarthan A., (2016), Molecular uptake of congo red dye from water

              on iron  composite nano particles. J. Mol. Liq. 224: 171–176.

[3]        Khan T. A., Sharma S., Ali I., (2011), Adsorption of rhodamine B dye from aqueous solution  

              onto acid activated mango (Mangifera indica) leaf powder: Equilibrium, kinetic  and    

              thermodynamic studies. J.  Toxicol. Environ. Health. 3: 286–297.

[4]        Ali I.,GuptaV. K., (2006), Advances in water treatment by adsorption technology. Nat. Protoc. 1: 2661-2667.

[5]        Culp S. J., (2002), Mutagenicity and carcinogenicity in relation to DNA adduct formation in rats fed  leucomalachite green. Mutat. Res. 506–507: 55–63.

[6]        Chandran D., (2016), A review of the textile industries waste water treatment methodologies. Int. J. Sci. Eng. Res. 7: 2229–5518.

[7]        Ali I., (2012), New generation adsorbents for water treatment. Chem. Rev. 112: 5073–5091.

[8]        Ali I., Asim M., Khan T. A., (2017), Removal of chromium (VI) from aqueous solution using guar gum–nano zinc oxide biocomposites adsorbent. Arab. J. Chem. 10: 2388–2398.

[9]         Ali I., (2014), Water treatment by adsorption columns: Evaluation at ground level. Sep. Purif.  Rev. 43: 175–205.

[10]      Khan T. A., Nazir M., Ali I., Kumar A, (2017), Removal of chromium (VI) from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent.  Arab. J. Chem. 10: 2388-2398.        

[11]      Cui W, Shao M, Liu L, liang Y, Rana L., (2013), Enhanced visible-light-responsive photocatalytic property of PbS-sensitized K4Nb6O17 nanocomposite photocatalysts. Appl. Surf. Sci. 276: 823–831.

[12]      Balaji Anjaneyulu R., Sathish Mohan B., Parasuram Naidu G., Muralikrishna R., (2018), Visible light enhanced photocatalytic degradation of Methylene blue by ternary nanocomposite. MoO3/Fe2O3/rGO. J. Asian Ceram. Soc. 6:183-195.

[13]      Balu S., Uma K., Pan G. T., Thomas C.-K., Yang T. C. K., Ramaraj S. K., (2018), Degradation of Methylene Blue dye in the presence of visible light using SiO2@α-Fe2O3 nanocomposites deposited on SnS2 flowers. Materials. 11: 1030-1036.      

[14]      Armstrong A. R., Bruce P. G., (1996), Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature. 381: 499-500.

[15]      Mohan G. R., Ravinder D., Ramana Reddy A. V., Boyanov B. S., (1999), Dielectric properties of polycrystalline mixed nickel-zinc ferrites. Mater. Lett. 40: 39–45.

[16]     Buckelew A., Gal´an-Mascar J. R., Dunbar K. R., (2002), Facile conversion of the face- centered cubic prussian-blue material K2[Mn2(CN)6] into the spinel oxide Mn3O4 at the  solid/water interface. Adv. Mater. 14: 1646-1648.

[17]     Myung S. T., Komaba S., Kumagai N., (2002), Hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2. Electrochim. Acta. 47: 3287–3295.   

[18]      Grootendorst E. J., Verbeek Y., Ponec V., (1995), The role of the mars and van krevelen mechanism in the selective oxidation of nitrosobenzene and the deoxygenation of nitrobenzene on oxidic catalysts. J. Catal. 157: 706–712. 

[19]    Stobbe E. R., De Boer B. A., Geus J. W., (1999), The reduction and oxidation behaviour of manganese oxides. Catal. Today. 47: 161–167. 

[20]     Kijlstra W., Daamen J., Vandegraaf J., Vanderlinden B., Poels E., Bliek A., (1996), Inhibiting an deactivating effects of water on the selective catalytic reduction of nitric oxide with ammonia over MnOx/Al2O3. Appl. Catal. B: Environ. 7: 337–357.

[21]     Mendelovici E., Sagarzazu A., (1988), Thermal synthesis of hausmanite via manganese Alkoxide.

          Thermochim. Acta. 133: 93–100.

[22]      Finocchio E., Busca G., (2001), Characterization and hydrocarbon oxidation activity of coprecipitated mixed oxides Mn3O4/Al2O3. Catal. Today. 70: 213–225.

[23]      Demazeau G., (1999), Solvothermal processes: A route to the stabilization of new Materials. J. Mater. Chem. 9: 15–18.

[24]      Yang L. X., Zhu Y. J., Tong H., Wang W. W., Cheng G. F., (2006), Low temperature synthesis of Mn3O4  polyhedral nanocrystals and magneticstudy. J. Solid State Chem. 179: 1225–1229.

[25]      Salavati-Niasari M., Davar F., Mazaheri M., (2008), Synthesis of Mn3O4 nanoparticles by thermal decomposition of a [bis(salicylidiminato) manganese (II)] complex. Polyhedron. 27: 3467-3471.

[26]      Chang Y. Q.,Yu D. P., Long Y., Xu J., Luo R., Ye C., (2005), Large-scale fabrication of single-crystalline Mn3O4 nanowires via vapor phase growth. J. Crystal Growth. 279: 88–92.

[27]      Du J., Gao Y., Chai L., Zou G., Li Y., Qian Y., (2006), Hausmannite Mn3O4 nanorods: Synthesis, characterization and magnetic properties. Nanotechnol. 17: 4923–4928.

[28]      Gopalakrishnan I. K., Bagkar N., Ganguly R., Kulshreshtha S. K., (2005), Synthesis of super paramagnetic Mn3O4 nanocrystallites by ultrasonic irradiation. J. Crystal Growth. 280: 436–441.

[29]      Hu Y., Chen J., Xue X., Li T., (2006), Synthesis of monodispersed single-crystal compass-shaped Mn3O4 viagamma-rayirradiation. Mater. Lett. 60: 383–385.         

[30]      Ozkaya T., (2008), Master thesis, Fatih University, Istanbul, Turkey.

[31]      Sharanya V. K., Gayathiri K., Sangeetha M., Shyam P. G., Gopi S. K., Vimalavathini R., Kavimani S., (2016), A pharmacological review on simarouba glauca DC. Int. J. Pharma.  Res. Rev. 5: 32-36.

[32]     Ghahi A., (1990), Introduction to pharmacognosy, Ahmadu Bello University press, Ltd.Zaria, Nigeria, 45-47.

[33]      Patil M. S., Gaikwad D. K., (2011), A critical review on medicinally important oil yielding plant Laxmitaru (Simarouba glauca DC.). J. Pharm. Sci. Res. 3: 1195-1213.

[34]      Sugimogo M., (1999), Past, present & future of ferrites. J. Am. Ceram. Soc. 82: 269–280.

[35]      Fritsch A. S., Sarrias J., Rousset A., Kulkarni G. U., (1998), Low-temperature oxidation of Mn3O4 hausmannite. Mat. Res. Bull. 33: 1185–1194.

[36]      Ozkaya T., Baykal A., Kavas H., Koseglu Y., Topark M. S., (2008), A novel synthetic route to Mn3O4 nanoparticles and their magnetic evaluation. Physica B. 403: 3760-3764. 

[37]      Santra S., Tapec R., Theodoropoulou N., Dobson J., Hebard A., Tan W., (2001), Synthesis and characterization of silica-coated Iron Oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir. 17: 2900-2906.

[38]       Patil K. C, Aruna S., Mimani T., (2002), Combustion synthesis: An update. Current Opin. Solid State Mater. Sci. 6: 507-512.

[39]      Ananth M. V., Pethkar S., Dakshinamurthi K., (1998), Distortion of MnO6 octahedra and electrochemical activity of Nstutite-based MnO2 polymorphs for alkaline electrolytes an FTIR study. J. Power Sources. 75: 278-282.

[40]     Brabers V. A. M., (1969), Infrared spectra of cubic and tetragonal manganese ferrites. Phys. Status Solidi. 33: 563-572.               

[41]      Durmu S., Kavas Z., Baykal H., Toprak A., (2009), A green chemical route for the synthesis of Mn3O4 nanoparticles. Cent. Eur. J. Chem. 7: 555-559.

[42]     Durmus Z., Tomas M., Baykal A., Kavas H., Altınçekiç T. G., Toprak M. S., (2010), The                             effect of neutralizing agent on the synthesis and characterization of Mn3O4 nanoparticles. Russ. J. Inorg. Chem. 55: 1947-1952.

[43]     Boyero Macstre J., Fernandez Lopez E., Gallardo-Amores J. M., Ruano Casero R., (2001), Influence of the synthesis parameters on the structural and textural properties of precipitated manganese oxide. Int. J. Inorg. Mater. 3: 889-899.

[44]      Dubal D. P., Dhawale D. S., Pawar S. M., (2010), A novel chemical synthesis and characterization of Mn3O4 thin films for supercapacitor application. Appl. Surf. Sci. 256: 4411-4416.

   [45]      Rejani P., Radhakrishnan A., Beena B., (2014), Photo catalytic decomposition of malachite green in aqueous solutions under UV irradiation using nano ZnO Rod. Iranica J. Energy Envir. 5: 233-239.

[46]      Radhakrishnan A., Padmavathi R., Beena B., (2018), CuO nano structures as an ecofriendly nano photo catalyst and antimicrobial agent for environmental remediation. Int. J. Nano Dimens. 9: 145-157.

[47]      Cui W., Guo D., Liu L., Hu J., Ranab D., Liang Y., (2014), Preparation of ZnIn2S4/K2La2Ti3O10 composites and their photocatalytic H2 evolution from aqueous Na2S/Na2SO3 under visible light irradiation. Catal. Commun. 48: 55–59.

[48]      Cui W., Qia Y., Li Liu L., Ranab D., Hu J., Liang Y., (2012), Synthesis of PbS–K2La2Ti3O10 composite and its photocatalytic activity for hydrogen production. Prog. Nat. Sci: Mater. Int. 22: 120–125.

 [49]   Wager C., Riggs W., Davia L., Moulder J., Muilenber G., (1979), Handbook of X-ray photoelectron spectroscopy, Perkin Elmer Corporation physical electronic division, waltham, MA.

[50]      Wang W., Ao L., (2008), Synthesis and optical properties of Mn3O4 nanowires by decomposing MnCO3 nanoparticles in flux. Crys. Growth and Design. 8: 358-362.

[51]    Davar F., Salavati-Niasari M., Mir N., Saberyan K., Monemzadeh M., Ahmadi E., (2010), Thermal decomposition route for synthesis of Mn3O4 nanoparticles in presence of a novel  Precursor. Polyhedron. 29: 1747–1753.

[52]      Salavati-Niasari M., Davar F., Mazaheri M., (2008), Synthesis of Mn3O4 nanoparticles by thermal decomposition of a [bis (salicylidiminato)manganese(II)] complex. Polyhedron. 27: 3467–3471.

[53]     Ameta K. L., Neema P., Rakshit A., (2014), Synthesis, characterisation and use of  novel bimetal oxide catalyst for photoassissted degradation of Malachite green dye.  J. Mater. 2014: 1-5.

[54]   Ranjith R., Krishnakumar V., Venkatesan J., Boobas S., Jayaprakash J., (2018), Photocatalytic degradation of metronidazole and methylene blue by PVA-assisted  Bi2WO6–CdS nanocomposite film under visible light irradiation. Appl. Nanosc.  8: 61–78.

[55]    Zhigang X., Li Zh., Jizhen M., Zhao X. S., (2010), Photocatalytic degradation of dyes over graphene–gold nanocomposites under visible light irradiation. Chem. Commun. 46: 6099–6101.