High temperature acidic oxidation of multiwalled Carbon nanotubes and synthesis of Graphene quantum dots

Document Type: Reasearch Paper

Authors

Amity Institute of Nanotechnology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India, 201301.

Abstract

The acid oxidation of carbon nanotube generally results in opening the close ends of the nanotube and to make surface modifications. Herewith, Multiwall carbon nanotubes (MWCNTs) were oxidized in acids at high temperature experimental conditions which led to the formation of graphene quantum dots (GQDs).   High resolution transmission electron microscope (HRTEM), energy dispersive X-ray spectroscopy (EDS), IR Infrared study showed the formation of 5-10 nm diameter GQDs and their crystalline structure having the inter-planner distance of 2.40Å and 2.14Å was confirmed by the electron diffraction.  The UV visible spectroscopy showed the lowest exciton peak at 4eV.  Photoluminescence (PL) studies showed the Photoluminescence peak in visible range which is independent of excitation wavelengths.  A mechanism for the formation of highly crystalline graphene quantum dots during the high temperature acid oxidation of MWCNTs is proposed in the paper.

Keywords

Main Subjects


[1] Dai H., Hafner J. H., Rinzler A. G., Colbert D. T., Smalley R. E., (1996), Nanotubes as nanoprobes in scanning probe microscopy. Nature. 384: 147-152.

[2] Tans S. J., Verschueren A. R., Dekker C., (1998), Room-temperature transistor based on a single carbon nanotube. Nature. 393: 49-55.

[3] Mittal N., Jain S., Mittal J., (2015), Application of electron energy loss spectroscopy for single wall carbon nanotubes-review. J. Appl. Spect. 82: 1-12.

[4] Mittal J., Lin K. L., (2011), The formation of electric circuits with carbon nanotubes and copper using tin solder. Carbon. 49: 4385-4391.

[5] Mittal J., Lin, K. L., (2017), Bulk thermal conductivity studies of Sn/SnO coated and filled multiwalled carbon nanotubes for thermal interface material. Fullerenes, Nanotubes Carbon Nanostruct. 25: 301-305.

[6] Mittal J., Lin K. L., (2017), Carbon nanotube-based interconnections. J. Mater. Sci. 52: 643-662.

[7] Garmaroudi F. S., Vahdati R. A. R., (2010), Functionalized CNTs for delivery of therapeutics. Int. J. Nano Dimens. 1: 89-102.

[8] Moosa A. A., Ibrahim M., Salloom R. F., (2014), Synthesis and purification of Carbon nanotubes. Int. J. Nano Dimens. 5: 97-104.

[9] Jorio A., Saito R, Dresselhaus G., Dresselhaus M. S., (2004), Determination of nanotubes properties by Raman spectroscopy. Philos. Trans. R. Soc. London Ser. A. 362: 2311-2336.

[10] Reich S., Thomsen C., (2004), Raman spectroscopy of graphite. Philos. Trans. R. Soc. London A: Mathem. Phys. Eng. Sci.362: 2271-2288.

[11] Sandler J., Shaffer M. S. P., Prasse T., Bauhofer W., Schulte K., Windle A. H., (1999), Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer. 40: 5967-5971.

[12] Baskaran D., Mays J. W., Bratcher M. S., (2005), Noncovalent and nonspecific molecular interactions of polymers with multiwalled carbon nanotubes. Chem. Mater. 17: 3389-3397.

[13] Zhang M., Su L., Mao L., (2006), Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid. Carbon. 44: 276-283.

[14] Garg A., Sinnott S. B., (1998), Effect of chemical functionalization on the mechanical properties of carbon nanotubes. Chem. Phys. Lett. 295: 273-278.

[15] Kuzmany H., Kukovecz A., Simon F., Holzweber M., Kramberger C., Pichler T., (2004), Functionalization of carbon nanotubes. Synth. Metals. 141: 113-122.

[16] Zhao W., Song C., Pehrsson P. E., (2002), Water-soluble and optically pH-sensitive single-walled carbon nanotubes from surface modification. J. Am. Chem. Soc.124: 12418-12419.

 [17] Unger E., Graham A., Kreupl F., Liebau M., Hoenlein, W., (2002), Electrochemical functionalization of multi-walled carbon nanotubes for solvation and purification. Curr. Appl. Phys. 2: 107-111.

[18] Porro S., Musso S., Vinante M., Vanzetti L., Anderle M., Trotta F., Tagliaferro A., (2007), Purification of carbon nanotubes grown by thermal CVD. Physica E: Low-dimens. Syst. Nanostruct. 37: 58-61

[19] Rosca I. D., Watari F., Uo M., Akasaka T., (2005), Oxidation of multiwalled carbon nanotubes by nitric acid. Carbon. 43: 3124-3131.

[20] Tsang S. C., Harris P. J. F., Green M. L. H., (1993), Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature. 362: 520-522.

[21] Ajayan P. M., Ebbesen T. W., Ichihashi T., Iijima S., Tanigaki K., Hiura H., (1993), Opening carbon nanotubes with oxygen and implications for filling. Nature. 362: 522-525.

[22] Hiura H., Ebbesen T. W., Tanigaki K., (1995), Opening and purification of carbon nanotubes in high yields. Adv. Mater. 7: 275-276.

[23] Ebbesen T. W., Ajayan P. M., Tanigaki K., (1994), Purification of nanotubes. Nature. 367: 519-519.

[24] Tsang S. C., Chen Y. K., Harris P. J., Green M. L., (1994), A simple chemical method of opening and filling carbon nanotubes. Nature. 372: 159-162.

[25] Shaffer M., Fan X., Windle A. H., (1998), Dispersion and packing of carbon nanotubes. Carbon. 36: 1603-1612.

[26] Sun Y. P., Fu K., Lin Y., Huang W., (2002), Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 35: 1096-1104.

[27] Mittal J., Kushwaha N., (2015), Over-oxidation of multiwalled carbon nanotubes and formation of fluorescent carbon nanoparticles. Mater. Lett. 146: 37-40.

[28] Bergeret C., Cousseau J., Fernandez V., Mevellec J. Y., Lefrant S., (2008), Spectroscopic evidence of carbon nanotubes’ metallic character loss induced by covalent functionalization via nitric acid purification.  J. Phys. Chem.  C. 112: 16411-16416.

[29] Higginbotham A. L., Kosynkin D. V., Sinitskii A., Sun Z., Tour J. M., (2010), Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4: 2059-2069.

[30] Wang L., Li W., Wu B., Li Z., Pan D., Wu M., (2017), Room-temperature synthesis of graphene quantum dots via electron-beam irradiation and their application in cell imaging. Chem. Eng. J. 309: 374-380.

[31] Wang L., Li W., Wu B., Li Z., Wang S., Liu Y., Pan D., Wu, M., (2016), Facile synthesis of fluorescent graphene quantum dots from coffee grounds for bioimaging and sensing. Chem. Eng. J. 300: 75-82.

[32] Wang L., Wu B., Li W., Li Z., Zhan J., Geng B., Wang S., Pan D., Wu M., (2017), Industrial production of ultra-stable sulfonated graphene quantum dots for Golgi apparatus imaging. J. Mater. Chem. B. 5: 5355-5361.

[33] Peng J., Gao W., Gupta B. K., Liu Z., Romero-Aburto R., Ge L., Vithayathil S. A., (2012), Graphene quantum dots derived from carbon fibers. Nano Lett. 12: 844-849.

[34] Tucureanu V., Matei A., Avram A. M., (2016), FTIR spectroscopy for Carbon family study. Critical Rew. Anal. Chem. 46: 502-520.

[35] Stobinski L., Lesiak B., Kövér L., Tóth J., Biniak S., Trykowski G., Judek J., (2010), Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J. Alloys Comps. 501: 77-84.

[36] Rajabi M, Moradi O., Mazlomifar A., (2015), Adsorption of methyl orange dye from Water solutions by Carboxylate group functionalized multi-walled Carbon nanotubes. Int. J. Nano Dimens. 6: 227-240.

[37] Abdi Z., Sedaghat S., (2016), Synthesis and characterization of functionalized single-walled Carbon nanotube/Chitosan/Polyaniline nanocomposite. Int. J. Nano Dimens.7: 25-32.

[38] Cullum B. M., Tuan Vo-Dinh., (2014), Preparation of liquid and solid samples: Wiley-VCH.

[39] Wang X., Cao L., Yang S. T., Lu F., Meziani M. J., Tian L., Sun Y. P., (2010), Bandgap‐Like strong fluorescence in functionalized Carbon nanoparticles. Angew. Chem. 122: 5438-5442.

[40] Anilkumar P., Wang X., Cao L., Sahu S., Liu J. H., Wang P., Sun Y. P., (2011), Toward quantitatively fluorescent carbon-based “quantum” dots. Nanoscale. 3: 2023-2027.

[41] Sun Y. P., Wang X., Lu F., Cao L., Meziani M. J., Luo P. G., Veca L. M., (2008), Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J. Phys. Chem. C. 112: 18295-18298.

[42] Zhu S., Shao J., Song Y., Zhao X., Du J., Wang L., Yang B., (2015), Investigating the surface state of graphene quantum dots. Nanoscale. 7: 7927-7933.

[43] Zhao N., He C., Li J., Jiang Z., Li Y., (2006), Study on purification and tip-opening of CNTs fabricated by CVD. Mater. Res. Bull. 41: 2204-2209.

[44] Kundu S., Wang Y., Xia W., Muhler M., (2008), Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: A quantitative high-resolution XPS and TPD/TPR study. J. Phys. Chem. C. 112: 16869-16878.