Ni2As2O7 pyrochlore nanomaterial: Solid state synthesis, crystal structure determination, crystal phase growth study and physical properties

Document Type: Reasearch Paper

Author

Department of Basic Science, Jundi-Shapur University of Technology, Dezful, Iran.

Abstract

Nanostructured Ni2As2O7 semiconductor samples were synthesized by a solid state method among As2O3 and Ni(NO3)2.6H2O raw materials at 650 °C (S1) and 750 °C (S2) as reaction temperatures. The synthesized nanomaterials were characterized by powder X-ray diffraction (PXRD) technique and Fourier-transform infrared (FTIR) spectroscopy. The Rietveld analysis showed that the obtained materials were crystallized well in the triclinic crystal structure with the space group P1. The data of Rietveld analysis showed that the purity of the synthesized nanomaterials was increased by increasing the reaction temperature. The morphologies of the synthesized materials were studied by field emission scanning electron microscope (FESEM). It was found that the morphology of the obtained materials was changed from homogeneous sponge to particles and somewhat porous structure, by increasing the reaction temperature. Besides, the average particle sizes were increased considerably by increasing the reaction temperature. Ultraviolet-visible spectra analysis showed that the synthesized Ni2As2O7 nanomaterials had strong light absorption in the ultraviolet light region. The direct optical band gap energies were 3.20, 3.90, 4.80 eV and 2.9, 3.40, 4.70 eV for S1 and S2, respectively. The data showed that the band gaps were decreased by increasing the reaction temperature that can be due to the increasing the crystallite sizes of the targets.

Keywords

Main Subjects


[1] Sellami M., Caignaert V., Hamdad M., Belarbi A., Sari-Mohamed I., Bahmani A., Bettahar N., (2011), Synthesis and characterization of the new pyrochlore Bi1.5Sb1.5-xNbxMnO7 solid solution. C. R. Chim. 14: 887-890.

[2] Khademinia S., Behzad M., Jahromi H. S., (2015), Catalytic performance of bismuth pyromanganate nanocatalyst for Biginelli reactions. RSC. Adv. 5: 24313-24318.

[3] Khademinia S., Behzad M., (2015), Low temperature hydrothermal synthesis, characterization and optical properties of strontium pyroniobate. Adv. Powder. Technol. 26: 644-649.

[4] Khademinia S., Behzad M., (2015), Lanthanum cerate (La2Ce2O7): hydrothermal synthesis, characterization and optical properties. Int. Nano Lett. 5: 101-107.

[5] KhademiniaS., BehzadM., (2015), Bismuth Pyromangenate: Hydrothermal and solid state synthesis, characterization and optical properties. J. Adv. Mater. Proc. 3: 77-84.

[6] Pirzada M., Grimes R. W., Maguire J., Sickafus K., (2002), Select Predictions of strontium accommodation in A2B2O7 pyrochlores. J. Mater. Res. 17: 2041-2047.

[7] Cheng J., Li J., Ma C., Hao Z., (2009), Catalytic combustion of methane over La2TM0.3Zr1.7O7−δ (TM = Mn, Fe, and Co) pyrochlore oxides. Catal. Commun. 10: 1170-1173.

[8] Christopher J., Swamy C. S., (1991), Surface characterization and catalytic activity of Ln2Ti2O7 (Ln=Y, Sm, Gd and Tb). J. Mater. Sci. 26: 4966-4970.

[9] Haynes D. J., Berry D. A., Shekhawat D., Gardner T. H., Spivey J. J., (2007), Catalytic partial oxidation of n-tetradecane on Rh- and Sr-substituted pyrochlores. Am. Chem. Soc. (ACS) Division of Energy and Fuels. 52: 284-285.

[10] Haynes D. J., Berry D. A., Shekhawat D., Spivey J. J., (2009), Catalytic partial oxidation of n-tetradecane using Rh and Sr substituted pyrochlores: Effects of sulfur. Catal. Today. 145: 121-126.

[11] Park S., Hwang H. J., Moon J., (2003), Catalytic combustion of methane over rare earth stannate pyrochlore.  Catal. Lett. 87: 219-223.

[12] Sohn J. M., Kim M. R., Woo S. I., (2003), The catalytic activity and surface characterization of Ln2B2O7 (Ln=Sm, Eu, Gd and Tb; B=Ti or Zr) with pyrochlore structure as novel CH4 combustion catalyst. Catal. Today.  83: 289-297.

[13] Jiang Z., Su J., Han Y., Alshahrani F., Hao Z., Xiao T., (2005), The effect of transition metal in Sn-based pyrochlores on the methane catalytic combustion. Prog. Nat. Sci. 15: 134-138.

[14] Wuensch B. J., Eberman K. W., Heremans C., Ku E. M., Onnerud P., Yeo E. M. E., Haile S. M., Stalick J. K., Jorgensen J. D. (2000), Connection between oxygen-ion conductivity of pyrochlore fuel-cell materials and structural change with composition and temperature. Solid State Ionics. 129: 111-133.

[15] Weil M., (2001), Cadmium (II) diarsenate (V), Cd2As2O7. Acta Cryst. E. 57: 28-29.

[16] Harvey C. F., Ashfaque K. N., Yu W., Badruzzaman A. B. M., Ali M. A., Oates P. M., Michael H. A., Neumann R. B., Beckie R., Islam S., Ahmed M. F., (2006), Groundwater dynamics and arsenic contamination in Bangladesh. Chem. Geol. 228: 112-136.

[17] Raicevic S., Stanic V., Kaludjerovic-Radoicic T., (2007), Theoretical assessment of calcium arsenates stability: Application in the treatment of arsenic contaminated waste. Mater. Sci. Forum. 555: 131-136.

[18] Chrissanthopoulos A., Baskoutas S., Bouropoulos N., Dracopoulos V., Poulopoulos P., Yannopoulos S. N., (2011), Synthesis and characterization of ZnO/NiO p-n heterojunctions: ZnO nanorods grown on NiO thin film by thermal evaporation. Photon. Nanostruc. 9: 132-139.

[19] Wu Y., Wu G., Ni X., Zhou Z., Zhang H. Q., Wu X., (1999), Electrochromic characteristics of nickel oxide film in Li+ containing electrolyte. J. Inorg. Mater. 14: 257-263.

[20] Ghosh M., Biswas K., Sundaresan A. C., Rao N. R., (2006), MnO and NiO nanoparticles: Synthesis and magnetic properties. J. Mater. Chem. 16: 106-111.

[21] Del Bianco L., Boscherini F., Tamisari M., Spizzo F., Vittori Antisari M., Piscopiello E., (2008), Exchange bias and interface structure in the Ni/NiO nanogranular system. J. Phys. D.: Appl. Phys. 41: 134008-134014.

[22] Ahmad T., Ramanujachary K. V., Lofland S. E., Ganguli A. K., (2006),  Magnetic and electrochemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route. Solid State Sci. 8: 425-430.

[23] El-Kemary M., Nagy N., El-Mehasse I., (2013), Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Mater. Sci. Semicond. Process. 16: 1747–1752.

[24] Rahdar A., Aliahmad M., Azizi Y., (2015), NiO nanoparticles: Synthesis and characterization. J. Nanostruc.  5: 145- 151.

[25] Riazian M., (2014), Synthesis and nano structural study on TiO2-NiO-SiO2 composite. Int. J. Nano Dimens. 5: 123-131.

[26] Zahraei F., Rahimi K., Yazdani A., (2015), Preparation and characterization of Graphene/Nickel oxide nanorods composite. Int. J. Nano Dimens. 6: 371-376.

[27] Khanahmadzadeh S., Barikan F., (2014), Fabrication and magnetic properties of Polyimide/Nickel Oxide nanocomposite. Int. J. Nano Dimens. 5: 365-370. 

[28] Grund S. C., Hanusch K., Wolf H. U., (2005), Arsenic and arsenic compounds, ullmann's encyclopedia of industrial chemistry. Weinheim: Wiley-VCH, doi:10.1002/14356007.a03_113.pub2.

[29] Gibaud S., Jaouen G., (2010), Arsenic-based drugs: From fowler's solution to modern anticancer chemotherapy. Top. Organomet. Chem. 32: 1–20.

[30] Rao Y., Li R., Zhang D., (2013), A drug from poison: How the therapeutic effect of arsenic trioxide on acute promyelocytic leukemia was discovered. Sci. China Life Sci. 56: 495–502.

[31] Soignet S. L., Frankel S. R., Douer D., Tallman M. S., Kantarjian H., Calleja E., Stone R. M., Kalaycio M., Scheinberg D. A., (2001), United states multicenter study of arsenic trioxide in relapsed acute promyelocytic Leukemia. J. Clin. Oncol. 19: 3852–3860.

[32] Weil M., Stoger B., (2010), Crystal chemistry of transition metal diarsenates M2As2O7 (M = Mn, Co, Ni, Zn): Variants of the thortveitite structure. Acta Cryst. B. 66: 603–614.

[33] Padmanabham A., Gandhi Y., Satyanarayana T., Veeraiah N., (2009), Spectroscopic and dielectric properties of crystallized PbO–Sb2O3–As2O3: NiO glass system. J. Alloys Compd. 488: 400–408.

[34] Pascual J., Camassel J., Mathieu M., (1978), Fine structure in the intrinsic absorption edge of TiO2. Phys. Rev. B: Solid State. 18: 5606-5614.

[35] Bishay A., Maghrabi C., (1969), Properties of bismuth borate glasses in relation to structure. Phys. Chem. Glasses. 10: 1-11.

[36] Srinivisa Rao G., Veeraiah N., (2001), Study on various physical properties of PbO–As2O3 glasses containing manganese ions. J. Alloys Compd. 327: 52-56.

[37] Đorđevi´c T., Wittwer A., Jagliˇci´c Z., Djerdj I., (2015), Hydrothermal synthesis of single crystal CoAs2O4 and NiAs2O4 compounds and their magnetic properties. RSC Adv. 5: 18280- 18287.