Viscoelastic behavior of Silica nanoparticle/polyimide nanocomposites using finite element approach

Document Type: Reasearch Paper


Department of Mechanical Engineering, Ayandegan Institute of Higher Education, Tonekabon, Iran.


A three-dimensional micromechanical finite element model is developed to study the viscoelastic behavior of the silica nanoparticle/polyimide nanocomposites. The representative volume element (RVE) of the model consists of three phases including silica nanoparticle, polyimide matrix and interphase which surrounds the nanoparticle. The interphase region is created due to the interaction between the silica nanoparticle and the polymer matrix. The effects of different important parameters such as interphase material properties and thickness, silica nanoparticle volume fraction and geometry as well as type of nanoparticles distribution are investigated. It is found that the interphase significantly affects the viscoelastic behavior of the nanocomposites. Also, the results reveal that with decreasing the nanoparticle diameter or increasing volume fraction, the creep strain of the nanocomposite reduces. Moreover, the creep strain of the nanocomposites decreases with the uniform distribution of the nanoparticles inside the polymer matrix. It is shown that for the elastic properties of the nanocomposites, while the predictions without interphase are far from the reality, the predicted mechanical properties with interphase demonstrate very good agreement with experimental data.


Main Subjects

[1] Ramanathan T., Liu H., Brinson L. C., (2005), Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J. Polym. Sci. Part B: Polym. Phys. 43: 2269–2279.

[2] Liu H., Brinson L. C., (2008), Reinforcing efficiency of nanoparticles: A simple comparison for polymer nanocomposites. Compos. Sci. Technol. 68: 1502-1512.

[3] Esmaeili J., Andalibi K., (2013), Investigation of the effects of nano-silica on the properties of concrete in comparison with micro-silica. Int. J. Nano Dimens. 3: 321-328.

[4] Zhao J., Du F., Cui W., Zhu, P., Zhou X., Xie X., (2014), Effect of silica coating thickness on the thermal conductivity of polyurethane/SiO2 coated multiwalled carbon nanotube composites. Compos. part A. 58: 1-6.

[5] Wetzel B., Haupert F., Zhang M. Q., (2003), Epoxy nanocomposites with high mechanical and tribological performance. Compos. Sci. Technol. 63: 2055–2067.

[6] Abd Ellateif T., Maitra S., (2017), Some studies on the surface modification of sol-gel derived hydrophilic Silica nanoparticles. Int. J. Nano Dimens. 8: 97-106.

[7] Tsai J. L., Tzeng S. H., Chiu Y. T., (2010), Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos. Part B. 41: 106–115.

[8] Eitan A., Fisher F. T., Andrews R., Brinson L. C., Schadler L. S., (2006), Reinforcement mechanisms in MWCNT-filled polycarbonate. Compos. Sci. Technol. 66: 1162–1173.

[9] Sun L., Gibson R. F., Gordaninejad F., (2011), Multiscale analysis of stiffness and fracture of nanoparticle-reinforced composites using micromechanics and global–local finite element models. Eng. Fract. Mech. 78: 2645-2662.

[10] Vaia R. A., Wagner H. D., (2004), Framework for nanocomposites. Materials Today. 7: 32-37.

[11] Kundalwal S. I., Ray M. C., (2013), Effects of carbon nanotube waviness on the elastic properties of the fuzzy fiber reinforced composites. J. Appl. Mech. 80: 021010-021013.

[12] Avella M., Bondioli F., Cannillo V., Errico M. E., Ferrari A. M., Focher B., Malinconico M., Manfredini T., Montorsi M., (2004), Preparation, characterisation and computational study of poly(e-caprolactone) based nanocomposites. Mat. Sci. Technol. 20: 1340–1344.

[13] Boutaleb S., Zaïri F., Mesbah A., Naït-Abdelaziz M., Gloaguen J. M., Boukharouba T., Lefebvre J. M., (2009), Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites. Int. J. Solids Struc. 46:1716–1726.

[14] Mortazavi B., Bardon J., Ahzi S., (2013), Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study. Comput. Mater. Sci. 69: 100–106.

[15] Odegard G. M., Clancy T. C., Gates T. S., (2005), Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer. 46: 553–562.

[16] Avella M., Bondioli F., Cannello V., Cosco S., Errico M. E., Ferrari Focher B., Malinconico V., (2004), Properties/structure relationships in innovative PCL–SiO2 nanocomposites. Macromolec. Symposia. 218: 201–210.

[17] Anoukou K., Zaïri F., Nait-Abdelaziz M., Zaoui A., Messager T.,  Gloaguen J. M., (2011), On the overall elastic moduli of polymer–clay nanocomposite materials using a self-consistent approach. Part I: Theory. Compos. Sci. Technol. 71: 197-205.

[18] Snipes J. S., Robinson C. T., Baxter S. C., (2011), Effects of scale and interface on the three-dimensional micromechanics of polymer nanocomposites. J. Compos. Mater. 45: 2537-2546.

[19] Baxter S. C., Robinson C. T., (2011), Pseudo-percolation: Critical volume fractions and mechanical percolation in polymer nanocomposites. Compos. Sci. Technol. 71: 1273–1279.

[20] Zhang H., Zhang Z., Friedrich K., Eger C., (2006), Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mechanica. 54: 1833–1842.

[21] Jang M. K., Hartwig A., Kim B. K., (2009), Shape memory polyurethanes cross-linked by surface modified silica particles. J. Mater. Chem. 19: 1166-1172.

[22] Lee S. K., Yoon S. H., Chung I., Hartwig A., Kim B. K., (2011), Waterborne polyurethane nanocomposites having shape memory effects. J. Polym. Sci. Part A: Polym. Chem. 49: 634-641.

[23] Dong Y, Ni Q. Q., Fu Y., (2015), Preparation and characterization of water-borne epoxy shape memory composites containing silica. Compos. Part A: Appl. Sci. Manufac. 72: 1-10.

[24] Hassanzadeh-Aghdam M. K., Ansari R., Darvizeh A., (2017), Micromechanical modeling of thermal expansion coefficients for unidirectional glass fiber-reinforced polyimide composites containing silica nanoparticles. Compos. Part A: Appl. Sci. Manufac. 96: 110-121.

[25] Hassanzadeh-Aghdam M. K., Ansari R., (2017), A micromechanical model for effective thermo-elastic properties of nanocomposites with graded properties of interphase. Iran. J. Sci. Technol. Transact. Mechanical Eng. 41: 141-147.

[26] Wang Z. D., Zhao X. X., (2008), Creep resistance of PI/SiO2 hybrid thin films under constant and fatigue loading. Compos. Part A. 39: 439-447.

[27] Dorigato A., Sebastiani M., Pegoretti A., Fambri L., (2012), Effect of silica nanoparticles on the mechanical Performances of Poly(Lactic Acid). J. Polym. Environ. 20: 713-725.

[28] Tsai J. L., Hsiao H., Cheng Y. L., (2010), Investigating mechanical behaviors of silica nanoparticle reinforced composites. J. Compos. Mater. 44: 505-524.

[29] Uddin  M. F., Sun C. T., (2008), Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix. Compos. Sci. Technol. 68: 1637–1643.

[30] Zheng Y., Ning R., Zheng Y., (2005), Study of SiO2 nanoparticles on the Improved performance of epoxy and fiber composites. J. Reinforc. Plastics Compos. 24: 223-233.

[31] Gang D., Chilan C., Haobin T., Zhenhua L., Dingzhong Z., Kang Q., (2015), The research on the effect of SiO2 and CF on the tensile and tribological properties of PI composite. Proc. IMechE Part J: J. Eng. Tribology. 229: 1513–1518.

[32] Wang Z. D., Lu J. J., Li Y., Fu S. Y., Jiang S. Q., Zhao X. X., (2006), Studies on thermal and mechanical properties of PI/SiO2 nanocomposite films at low temperature. Compos. Part A. 37: 74–79.

[33] Wang Z. D., Lu J. J., Li Y., Fu S. Y., Jiang S. Q., Zhao X. X., (2005), Low temperature properties of PI/SiO2 nanocomposite films. Mater. Sci. Eng. B. 123: 216–221.

[34] Krempl E., Khan F., (2003), Rate (time)-dependent deformation behavior: An overview of some properties of metals and solid polymer. Int. J. Plastic. 19: 1069–1095.

[35] Jia Y., Peng K., Gong X. L., Zhang Z., (2011), Creep and recovery of polypropylene/carbon nanotube composites. Int. J. Plastic. 27: 1239-1251.

[36] Smith J. S., Bedrov D., Smith G. D., (2003), A molecular dynamics simulation study of nanoparticle interactions in a model polymer–nanoparticle composite. Compos. Sci. Technol. 63: 1599–1605.

[37] Kopernikn M., Milenin A., (2014), Numerical modeling of substrate effect on determination of elastic and plastic properties of TiN nanocoating in nanoindentation test. Archives of Civil and Mechanic. Eng. 14: 269-277.

[38] Kari S., Berger H., Gabbert U., Guinovart-Dıaz R., Bravo-Castillero J., Rodrıguez-Ramos R., (2008),  Evaluation of influence of interphase material parameters on effective material properties of three phase composites. Compos. Sci. Technol. 68: 684–691.

[39] Monfareda V., Mondali M., Abedian A., (2012), Steady state creep behavior of short fiber composites by mapping, logarithmic functions (MF) and dimensionless parameter (DP) techniques. Archives of Civil and Mechanic. Eng. 12: 455-463.

[40] Fedeliński P., Górski R., (2015), Optimal arrangement of reinforcement in composites. Archives of Civil and Mechanic. Eng. 15: 525-531.

[41] Seidel G. D., Lagoudas D. C., (2006), Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites. Mechan. Mater. 38: 884–907.

[42] Shokrieh M. M., Rafiee R., (2010), On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region. Compos. Struct. 92: 647–652.

[43] Peng R. D., Zhou H. W., Wang H. W., Mishnaevsky L., (2012), Modeling of nano-reinforced polymer composites: Microstructure effect on Young’s modulus. Computat. Mater. Sci. 60: 19–31.

[44] Jia X., Liu B., Huang L., Hui D., Yang X., (2013), Numerical analysis of synergistic reinforcing effect of silica nanoparticle–MWCNT hybrid on epoxy-based composites. Compos. Part B. 54: 133–137.

[45] Mortazavi B., Baniassadi M., Bardon J., Ahzi S., (2013), Modeling of two-phase random composite materials by finite element, Mori–Tanaka and strong contrast methods. Compos. Part B. 45: 1117–1125.

[46] Li K., Gao X. L., Roy A. K., (2006), Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites. Mech. Adv. Mater. Struc. 13: 317–328.