Fe3O4@SiO2-NH2 as an efficient nanomagnetic carrier for controlled loading and release of acyclovir

Document Type: Reasearch Paper

Authors

1 Department of Chemistry, School of Sciences, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran.

2 Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran.

3 Department of Chemistry, Shahid Beheshti University, G. C., Tehran, 1983963113, Iran.

4 Department of Biology, School of Sciences, Hakim Sabzevari University, Sabzevar, Iran.

Abstract

Considering many applications of functionalized metal oxide nanoparticles in magnetic resonance imaging, drug delivery, neutron irradiation, electronics, catalysis and optics; herein, a new strategy is developed to functionalize magnetite nanoparticles to improve their performances in the delivery of acyclovir. In this study, magnetite Fe3O4 nanoparticles are synthesized by hydrothermal method. Then, the surface hydroxyl groups were extended by treating with TEOS (tetraethyl orthosilicate); Finally, TMPA (trimethoxysilyl propylamine) was anchored to the surface hydroxyl groups to produce amino-functionalized Fe3O4@SiO2-NH2 magnetic nanoparticles. The synthesized sample was characterized by UV-Vis, FESEM, FT-IR, and XRD. Afterward, the functionalized nanoparticles were examined in the delivery of acyclovir as an active antiviral drug model involving amine and hydroxyl functional groups. For this purpose, the amount of loading/release of the drug was investigated in different pHs, including mouth and stomach pH values. The screened experimental parameters in this study revealed that the prepared magnetite nanoparticles decorated with amine functional groups are successful in the controlled delivery of acyclovir.

Keywords

Main Subjects


[1] Knop K., Hoogenboom R., Fischer D., Schubert U. S., (2010), Poly (Ethylene Glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew.  Chem.  Int.  Ed. Eng. 49: 6288-6295.

[2]  Peer D., Karp J. M., Hong S., Farokhzad O. C., Margalit R., Langer R., (2007), Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2: 751-758.

[3]   Shi J., Votruba A. R., Farokhzad O. C., Langer R., (2010), Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano. Lett. 10: 3223-3229.

[4]  Dreaden E. C., Alkilany A. M., Huang X., Murphy C. J., (2012), The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 41: 2740-2747.

[5] Torchilin V. P., Lukyanov A. N., (2003), Peptide and protein drug delivery to and into tumors: Challenges and solutions. Drug. Discov. Today. 8: 259-267.

[6]   Bae Y., Kataoka K., (2009), Intelligent polymeric micelles from functional poly (ethylene glycol)-poly (amino acid) block copolymers. Adv. Drug. Deliv. Rev.  61: 768-776.

[7] Kaasgaard T.,   Andresen T. L., (2010), Liposomal cancer therapy: Exploiting tumor characteristics. Expert. Opin. Drug. Deliv. 7: 225-234.

[8] Astruc D., Boisselier E., Ornelas C., (2010), Dendrimers designed for functions: from physical, photophysical and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics and nanomedicine. Chem. Rev. 110: 1857-1863.

[9] Thakor A. S., Jokerst J., Zavaleta C., Massoud T. F., Gambhir S. S., (2011), Gold nanoparticles: A revival in precious metal administration to patients. Nano Lett. 11: 4029-4038.

[10] Hammond P. T., (2004), Form and function in multilayer assembly: New applications at the nanoscale. Adv. Mater.16: 1271-1278.

[11] Ginebra M. P., Traykova T., Planell J. A., (2006), Calcium phosphate cements as bone drug delivery systems: A review.  J. Control.  Rel. 113: 102-107.

[12] Patri A. K., Majoros L. J., Baker J. R., (2002), Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Bio.  l6: 466-473.

[13] Rezwan K., Chen Q. Z., Blaker J. J.,  Boccaccini A. R., (2006), Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 2: 3413-3418.

[14] Horcajada P., Chalati T., Serre C., Gillet B., Sebrie C., (2010), Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9: 172-178.

[15] Zahir Abadi I. J, Sadeghi O., Lotfizadeh H. R., Tavassoli N.,  Amani V., Amini M. M., (2012), Novel modified manoporous silica for oral drug delivery: Loading and release of clarithromycin.  J. Sol Gel  Sci. Technol. 61: 90-95.

[16] Tang F., Li L., Chen D., (2012), Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 24: 150-156.

[17] Tang Q., Xu Y., Wu D., Sun Y., Wang J., (2006), Studies on a new carrier of trimethylsilyl-modified mesoporous material for controlled drug delivery.  Control. Rel. 114: 41-46.

[18] Trewyn B. G., Giri S., Slowing I. I.,  Lin V. S. Y., (2007), Mesoporous silica nanoparticle based controlled release, drug delivery and biosensor systems. Chem. Commun. 31: 3236-3241.

[19] Yang Q., Wang S. H., Fan P., Wang L., Di Y., Lin K., Xiao F. S., (2005), pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chem. Mater. 17: 59-68.

[20] Chomchoey N., Bhongsuwan D., Bhongsuwan T., (2010), Magnetic properties of magnetite nanoparticles synthesized by oxidative alkaline hydrolysis of iron powder. J. Nat. Sci. 44: 963-971.

[21] Hoa L. T. M., Dung T. T., Danh T. M., Duc N. H., Chien D. M., (2009), Preparation and characterization of magnetic nanoparticles coated with polyethylene glycol. J. Phys. 187: 12-18.

[22] Acar H. Y. C., Garaas R. S., Syud F., Bonitatebus P., Kulkarni A. M., (2005), Superparamagnetic nanoparticles stabilized by polymerized PEGylated coatings. J. Magn. Magn. Mater. 293: 1-8.

[23] Huang Y., Zhang L., Huan W., Xiaojuan L., Yang Y., (2010), A study on synthesis and properties of Fe3O4 nanoparticles by solvothermal method.  Glass Phys. Chem. 36: 325-331.

[24] Saadatjooa N., Golshekana M., (2013), Organic/inorganic MCM-41 magnetite nanocomposite as a solid acid catalyst for synthesis of benzo [α] xanthenone derivatives. J. Mol.  Cat.  A: Chem. 377: 173-179.

[25]   Maniya N. H., Sanjaykumar R. P.,  Murthy Z. V. P.,  (2015), Controlled delivery of acyclovir from porous silicon micro- and nanoparticles. Appl. Sur. Sci. 330: 358-363.

[26] Huang S. T., Du Y. Z, (2001), Synthesis and anti-hepatitis B virus activity of acyclovir conjugated stearic acid-g-chitosan oligosaccharide micelle. Carbohydr. Polym. 83: 1715-1722.

[27] Liu X., Ma Z., Xing J., Liu H., (2004), Preparation and characterization of amino–silane modified superparamagnetic silica nanospheres. J. Magn. Magn. Mater. 270: 1-8.

[28] Masteri-Farahani M., Tayyebi N., (2011), A new magnetically recoverable nanocatalyst for epoxidation of olefins.  J. Mol. Catal. A: Chem. 348: 83-88.

[29] Banerjee S. S., Chen D. H., (2007), Magnetic nanoparticles grafted with cyclodextrin for hydrophobic drug delivery. Chem. Mater. 19: 6345-6349.

[30] Moazzen E., Ebrahimzadeh H., Amini M., Sadeghi O., (2013), A novel biocompatible drug carrier for oral delivery and controlled release of antibiotic drug: loading and release of clarithromycin as an antibiotic drug model. J. Sol Gel Sci. Technol. 66: 345-352.