Synthesis and characterization of the electrospun fibers prepared from waste polymeric materials

Document Type: Reasearch Paper


1 Department of Chemical Engineering, Birjand University of Technology, Birjand, Iran

2 Department of Materials Engineering, Birjand University of Technology, Birjand, Iran


Recently, the demands for the production of many different types of plastic wastes are greatly growing that subsequently, lead to the serious challenges in environmental considerations. Since, these materials are rarely resolved by microorganisms, hence, their recycling to the useful materials is crucial. In the present study, we used a solution electrospinning technique to synthesize nano/micro fibers. SEM and FTIR analyses were performed for characterization of the prepared samples. The investigations obviously confirmed the formation of nano/microfibers of polyethylene terephthalate (PET), polystyrene (PS) and polycarbonate (PC) from the related waste plastics. To investigate the effect of various operational parameters of electrospinning method, the effect of the used needle diameter and voltage difference was taken into consideration.


Main Subjects

[1] Fraïsse F., Verney V., Commereuc S., Obadal M., (2005), Recycling of poly(ethylene terephthalate)/polycarbonate blends, Polym. Degrad. Stabil. 90: 250-255.

[2] Barriocanal C., Díez M. A., Alvarez R., (2005), PET recycling for the modification of precursors in carbon materials manufacture, J. Anal. Appl. Pyrol. 73: 45-51.

[3] Parra J. B., Ania C. O., Arenillas A., Rubiera F., Pis J. J., (2004), High value carbon materials from PET recycling. Appl. Surf. Sci. 23: 304-308.

[4] La Mantia F. P., Botta L., Morreale M., Scaffaro R., (2012), Effect of small amounts of poly(lactic acid) on the recycling of poly(ethylene terephthalate) bottles. Polym. Degrad. Stabil. 97: 21-24.

[5] Navarro R., Ferrándiz S., López J., Seguí V. J., (2008), The influence of polyethylene in the mechanical recycling of polyethylene terephtalate. J. Mater. Process. Tech. 195: 110-116.

[6] Pingale N. D., Shukla S. R., (2008), Microwave assisted ecofriendly recycling of poly (ethylene terephthalate) bottle waste. Eur. Polym. J. 44: 4151-4156.

[7] Shukla S. R., Harad A. M., Jawale L. S., (2009), Chemical recycling of PET waste into hydrophobic textile dyestuffs. Polym. Degrad. Stabil. 94: 604-609.

[8] Brennan L. B., Isaac D. H., Arnold J. C., (2002), Recycling of acrylonitrile–butadiene–styrene and high-impact polystyrene from waste computer equipment. J. Appl. Polym. Sci. 86: 572-578.

[9] Elmaghor F., Zhang L., Fan R., Li H., (2004), Recycling of polycarbonate by blending with maleic anhydride grafted ABS. Polymer. 45: 6719-6724.

[10] Sanchez E. M. S., (2007), Ageing of PC/PBT blend: Mechanical properties and recycling possibility. Polym. Test. 26: 378-387.

[11] Hidaka K., Iwakawa Y., Maoka T., Tanimoto F., Oku A., (2009), Viable chemical recycling of poly(carbonate) as a phosgene equivalent illustrated by the coproduction of bisphenol A and carbohydrate carbonates. J. Mater. Cycles Waste. 11: 6-10.

[12] Tsintzou G. P., Antonakou E. V., Achilias D. S., (2012), Environmentally friendly chemical recycling of poly(bisphenol-A carbonate) through phase transfer-catalysed alkaline hydrolysis under microwave irradiation. J. Hazard. Mater. 241–242: 137-145.

[13] Shin C., (2006), Filtration application from recycled expanded polystyrene. J. Colloid Interf. Sci. 302: 267-271.

[14] Shin C., Chase G. G., (2005), Nanofibers from recycle waste expanded polystyrene using natural solvent. Polym. Bull. 55: 209-215.

[15] Strain I. N., Wu Q., Pourrahimi A. M., Hedenqvist M. S., Olsson R. T., Andersson R. L., (2015), Electrospinning of recycled PET to generate tough mesomorphic fibre membranes for smoke filtration. J. Mater. Chem. A. 3: 1632-1640.

[16] Zander N. E., Sweetser D., Cole D. P., Gillan M., (2015), Formation of nanofibers from pure and mixed waste streams using electrospinning. Ind. Eng. Chem. Res. 54: 9057-9063.

[17] Veleirinho B., Rei M. F., Lopes-Da-Silva J. A., (2008), Solvent and concentration effects on the properties of electrospun poly(ethylene terephthalate) nanofiber mats. J. Polym. Sci. Part B: Polym. Phys. 46: 460-471.

[18] Wang C., Lee M.-F., Wu Y.-J., (2012), Solution-electrospun poly(ethylene terephthalate) fibers: Processing and characterization. Macromolec. 45: 7939-7947.

[19] Guo Z., Wu X., Dong J., Su H., Cai R., (2014), Electrospun nanofibers prepared using polystyrene (PS) with polymeric additives for the determination of nicotine in cigarette mainstream smoke. Anal. Methods. 6: 5120-5126.

[20] Lee M. W., An S., Latthe S. S., Lee C., Hong S., Yoon S. S., (2013), Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil. ACS Appl. Mater. Interf. 5: 10597-10604.

[21] Nitanan T., Opanasopit P., Akkaramongkolporn P., Rojanarata T., Ngawhirunpat T., Supaphol P., (2012), Effects of processing parameters on morphology of electrospun polystyrene nanofibers. Korean J. Chem. Eng. 29: 173-181.

[22] Li Q., Xu Y., Wei H., Wang X., (2016), An electrospun polycarbonate nanofibrous membrane for high efficiency particulate matter filtration. RSC Adv. 6: 65275-65281.

[23] Shawon J., Sung C., (2004), Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF.  J. Mater. Sci. 39: 4605-4613.

[24] Khan W. S., Asmatulu R., Davuluri S., Dandin V. K., (2014), Improving the economic values of the recycled plastics using nanotechnology associated studies. J. Mater. Sci. Technol. 30: 854-859.

[25] Macossay J., Marruffo A., Rincon R., Eubanks T., Kuang A., (2007), Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly(methyl methacrylate). Polym. Advan. Technol. 18: 180-183.

[26] Mo X. M., Xu C. Y., Kotaki M., Ramakrishna S., (2004), Electrospun P(LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials. 25: 1883-1890.

[27] Hung W.-C., Fu S.-H., Tseng J.-J., Chu H., Ko T.-H., (2007), Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol–gel method. Chemosphere. 66: 2142-2151.

[28] Yu J. C., Ho W., Yu J., Hark S. K., Iu K., (2003), Effects of trifluoroacetic acid modification on the surface microstructures and photocatalytic activity of mesoporous TiO2 thin films. Langmuir. 19: 3889-3896.

[29] Kayaci F., Uyar T., (2014), Electrospun polyester/cyclodextrin nanofibers for entrapment of volatile organic compounds. Polym. Eng. Sci. 54: 2970-2978.

[30] Zhang J., Wen B., Wang F., Ding Y., Zhang S., Yang M., (2011), In situ synthesis of ZnO nanocrystal/PET hybrid nanofibers via electrospinning. J. Polym. Sci. Part B: Polym. Phys. 49: 1360-1368.

[31] Lu X., Zhou J., Zhao Y., Qiu Y., Li J., (2008), Room temperature ionic liquid based polystyrene nanofibers with superhydrophobicity and conductivity produced by electrospinning. Chem. Mater. 20: 3420-3424.

[32] Li X., Ding B., Lin J., Yu J., Sun G., (2009), Enhanced mechanical properties of superhydrophobic microfibrous polystyrene mats via polyamide 6 nanofibers. J. Phys. Chem. C. 113: 20452-20457.

[33] Tamer U., Rasmus H., Jale H., Xingfei Z., Flemming B., Peter K., (2009), The formation and characterization of cyclodextrin functionalized polystyrene nanofibers produced by electrospinning. Nanotechnol. 20: 125605-9.

[34] Nair S., Hsiao E., Kim S. H., (2009), Melt-Welding and improved electrical conductivity of nonwoven porous nanofiber mats of poly(3,4-ethylenedioxythiophene) grown on electrospun polystyrene fiber template). Chem. Mater. 21: 115-121.

[35] Han X.-J., Huang Z.-M., He C.-L., Liu L., Wu Q.-S., (2006), Coaxial electrospinning of PC(shell)/PU(core) composite nanofibers for textile application. Polym. Composite. 27: 381-387.

[36] Buchko C. J., Chen L. C., Shen Y., Martin D. C., (1999), Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer. 40: 7397-7407.

[37] Zong X., Kim K., Fang D., Ran S., Hsiao B. S., Chu B., (2002), Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer. 43: 4403-4412.

[38] Nair L. S., Bhattacharyya S., Bender J. D., Greish Y. E., Brown P. W., Allcock H. R., Laurencin C. T., (2004), Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Biomacromolecules. 5: 2212-2220.