A theoretical study on the adsorption behaviors of Ammonia molecule on N-doped TiO2 anatase nanoparticles: Applications to gas sensor devices

Document Type: Reasearch Paper


1 Molecular Simulation Laboratory (MSL), Azarbaijan Shahid Madani University, Tabriz, Iran.

2 Computational Nanomaterials Research Group, Azarbaijan Shahid Madani University, Tabriz, Iran.

3 Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.



We have performed density functional theory investigations on the adsorption properties of ammonia molecule on the undoped and N-doped TiO2 anatase nanoparticles. We have geometrically optimized the constructed undoped and N-doped nanoparticles in order to fully understand the adsorption behaviors of ammonia molecule. For TiO2 anatase nanoparticles, the binding site is preferentially located on the fivefold coordinated titanium sites. However, we have mainly studied the interaction of NH3 molecule over the fivefold coordinated titanium sites including the bond lengths, bond angles, adsorption energies, density of states (DOSs) and molecular orbitals. The results indicated that the adsorption of NH3 molecule on the N-doped nanoparticles is energetically more favorable than the adsorption on the undoped one, suggesting the strong adsorption of NH3 molecule on the N-doped nanoparticles. Adsorption on the N-doped nanoparticles leads to the more stable and favorable complexes. Our theoretical work represents that the N-doped nanoparticles have higher sensing capability than the pristine ones to remove the hazardous NH3 molecules from the environment.


Main Subjects

[1] Linsebigler A. L., Lu G., Yates J. T., (1995), Photocatalysis on TiO2. Chem. Rev. 95: 735-758.

[2] Diebold U., (2003), The surface science of titanium dioxide. Surf. Sci. Rep. 48: 53−229.

[3] Fujishima A., Zhang X., Tryk, D. A., (2008), TiO2 photocatalysis and related surface phenomena. J. Surf. Sci. Rep. 63: 515−582.

[4] Henderson M. A., (2011), A surface science perspective on TiO2 photocatalysis. J. Surf. Sci. Rep. 66: 185−297.

[5] Banfied J. F., Veblen D. R., (1992), Conversion of perovskite to anatase and TiO2 (B): A TEM study and the use of fundamental building blocks for understanding relationships among the TiO2 minerals. J. Am. Mineral. 77: 545-557.

[6] Grätzel M., (2001), Photoelectrochemical cells. Nature. 414: 338−344.

[7] Fujishima A., Honda, K., (1972), Electrochemical photolysis of water at a semiconductor electrode. Nature. 37: 238-242.

[8] Dutta P. K., Ginwalla A., Hogg B., Patton B. R., Chwieroth B., Liang Z., Gouma P., Mills M., Akbar, S., (1999), Interaction of CO with Anatase Surfaces at High Temperatures: Optimization of a CO Sensor. J. Phys. Chem. B. 103: 4412-4422.

[9] Garfunkel E., Gusev E., Vul (Eds.) A., (1998), Fundamental Aspects of Ultrathin Dielectrics on Si-based Devices, NATO Science Series, Kluwer Academic Publishers, Dordrecht. 

[10] Liu H., Zhao M., Lei Y., Pan C., Xiao W., (2012), Formaldehyde on TiO2 anatase (1 0 1): A DFT study. J. Comput. Mater. Sci. 15: 389–395.

[11] Erdogan R., Ozbek O., Onal, I., (2010), A periodic DFT study of water and ammonia adsorption on anatase TiO2 (001) slab. J. Surf. Sci. 604: 1029-1033.

[12] Onal I., Soyer S., Senken S., (2006), Adsorption of water and ammonia on TiO2-Anatase Cluster Models. J. Surf. Sci. 600: 2457–2469.

[13] Wei Z., Mei W., Xiyu S., Yachao W., Zhenyong L., (2010), Electronic and optical properties of the doped TiO2 system. J. Semiconduc. 31: 072001-072005.

[14] Liu J., Dong L., Guo W., Liang T., Lai W., (2013), CO adsorption and oxidation on N-Doped TiO2 Nanoparticles. J. Phys. Chem. C. 117: 13037-13044.

[15] Zhao D., Huang X., Tian B., Zhou S., Li Y., Du Z., (2011), The effect of electronegative difference on the electronic structure and visible light photocatalytic activity of N-doped anatase TiO2 by first-principles calculations. J. Appl. Phys. Letts.  98: 162107-162111.

[16] Tang S., Cao Z., (2011), Adsorption of nitrogen oxides on graphene and graphene oxides: insights from density functional calculations. J. Chem. Phys. 134: 044710-044715.

[17] Rumaiz A. K., Woicik J., Cockayne C. E., Lin H. Y., Jaffari G. H., Shah S. I., (2009), Oxygen vacancies in N doped TiO2: Experiment and first principle calculations. J. Appl. Phys. Lett. 95: 262111-262115.

[18] Chen Q., Tang C., Zheng G., (2009), First–principles study of TiO2 anatase (101) surfaces doped with N. J. Physica. B: Condensed Matter. 404: 1074–1078.

[19] Jia L., Wu C., Han S., Yao N., Li Y., Li Z., Chi B., Pu J., Jian, L., (2011), Enhanced visible-light photocatalytic activity of anatase TiO2 through N and S codoping. J.  Alloys and Comp.  509: 6067–6071.

[20] Liu J., Liu Q., Fang P., Pan C., Xiao W., (2012), First principles study of the adsorption of a NO molecule on N-doped anatase nanoparticles. J. Appl Surf. Sci. 258: 8312-8318.

[21] Li A., Fei Y., Aschauer U., Chen J., Selloni A., (2014), Adsorption and reactions of O2 on anatase TiO2. Acc. Chem. Res. 47 : 3361-3368.

[22] Berger T., Sterrer M., Diwald O., Knözinger E., Panayotov D., Thompson T. L., Yates, J. T., (2005), Light-Induced charge separation in Anatase TiO2 particles. J. Phys. Chem. B. 109: 6061−6068.

[23] Abbasi A., Sardroodi J. J., Ebrahimzadeh, A. R., (2016), Chemisorption of CH2O on N-doped TiO2 anatase nanoparticle as modified nanostructure media: A DFT study. J. Surf. Sci. 654: 20-32.

[24] Abbasi A., Sardroodi, J. J., (2016), Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: Insights from density functional theory calculations. J. Theor. Comput. Chem. 1095: 15-28.

[25] Abbasi A., Sardroodi, J. J., (2016), N-doped TiO2 anatase nanoparticles as a highly sensitive gas sensor for NO2 detection: Insights from DFT computations. J. Environ. Sci.: Nano. 3: 1153-1164.

[26] Otoufi M. K., Shahtahmasebebi N., Kompany A., Goharshadi E., (2014), Systematic growth of Gold nanoseeds on silica for Silica@Gold core-shell nanoparticles and investigation of optical properties. Int. J. Nano. Dimens. 5: 525-531.

[27] Ebrahimzadeh A. R., Abbasi M., Afshari S., (2015), Density functional theory study of the adsorption of NO2 molecule on Nitrogen-doped TiO2 anatase nanoparticles. Int. J. Nano Dimens. 6: 11-17.

[28] Sardroodi J. J., Afshari S., Ebrahimzadeh A. R., Abbasi M., (2015), Theoretical computation of the quantum transport of zigzag mono-layer Graphenes with various z-direction widths. Int. J. Nano Dimens. 6: 105-109.

[29] Abbasi A., Nadimi E., Planitz P., Radehaus C., (2009), Density functional study of the adsorption of aspirin on the hydroxylated (0 0 1) α-quartz surface. J. Surf. Sci. 603: 2502-2506.

[30] Hohenberg P., Kohn W., (1964), Inhomogeneous Electron Gas. Phys. Rev. 136: B864–B871.

[31] Kohn W., Sham L., (1965), Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 140: A1133–A1138.

[32] The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site ‘http://www.openmxsquare.org’.

[33] Ozaki T., (2003), Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B. 67: 155108-155111.

[34] Perdew J. P., Burke K., Ernzerhof M., (1997), Generalized Gradient Approximation Made Simple. Phys. Rev. Letts. 78: 1396-1399.

[35] Koklj A., (2003), Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput. Mater. Sci. 28: 155−168.

[36] Web page at: http://rruff.geo.arizona.edu/AMS/amcsd.php.

[37] Wyckoff, R. W. G., (1963), crystal structures, Second edition. Interscience Publishers, USA, New York.