Electronic properties studies of Benzene under Boron Nitride nano ring field

Document Type: Reasearch Paper

Authors

1 Department of Chemistry, Islamshahr Branch, Islamic Azad University, Tehran, Iran

2 Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran

10.7508/ijnd.2016.04.004

Abstract

In this study, B12N12 Nano ring has been selected because it consist of four 6-side rings and polar bonds B-N which in comparison with non-polar bonds C-C, is more suitable for the study of the absorption of other compounds. So reactivity and stability of Benzene alone and in the presence B12N12 nano ring field checked. To determine the non-bonded interaction energies between Benzene and B12N12 nano ring in different orientations and distances, geometry of molecules with density functional theory B3LYP method and 6-31g *basis set optimized. Then calculated the natural bond orbital (NBO), nuclear independent chemical shift (NICS) and muliken charge of Benzene atoms alone and in the presence B12N12 done. The results of any order explains reduce the reactivity and increase stability of Benzene in the presence B12N12 nano ring and electron transfer from the nano ring to Benzene. The gaussian quantum chemistry package is used for all calculations.

Keywords

Main Subjects


[1] Kroto H. W., Heath J. R., O’Brien S. C., Curl R. F., Smalley R. E., (1985), C60: Buckminsterfullerene. Nature. 318: 162–163.

[2] Iijima S., (1991), Helical microtubules of graphitic carbon. Nature. 354: 56–58.

[3] Oku T., Hirano T., Kuno M., Kusunose T., Niihara K., Suganuma K., (2000), Synthesis, atomic structures and properties of carbon and boron nitride fullerene materials. Mater. Sci. Eng. B. 74: 206–217.

[4] Oku T., Kuno M., Kitahara H., Narita I., (2001), Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials. Int. J. Inorg. Mater. 3: 597–612.

[5] Mickelson W., Aloni S., Han W. Q., Cumings J., Zettli A., (2003), Packing C60 in boron nitride nanotubes. Science. 300: 467–469.

[6] Oku T., Hiraga K., Matsuda T., Hirai T., Hirabayashi M., (2003), Twin structures of rhombohedral and cubic boron nitride prepared by chemical vapor deposition method. Diamond Relat. Mater. 12: 1138–1145.

[7] Oku T., Hiraga K., Matsuda T., Hirai T., Hirabayashi M., (2003), Formation and structures of multiply-twinned nanoparticles with fivefold symmetry in chemical vapor deposited boron nitride. Diamond Relat. Mater. 12: 1918–1926.

[8] Jensen F., Toflund H., (1993), Structure and stability of C24 and B12N12 isomers. Chem. Phys. Lett. 201: 89–96.

[9] Zandler M. E., Behrman E. C., Arrasmith M. B., Myers J. R., Smith T. V., (1996), Semiempirical molecular orbital calculation of geometric, electronic, and vibrational structures of metal oxide, metal sulfide, and other inorganic fullerene spheroids. J. Mol. Str. (Theochem). 362: 215–224.

[10] Seifert G., Fowler P. W., Mitchell D., Porezag D., Frauenheim T. H., (1997), Boron-nitrogen analogues of the fullerenes: electronic and structural properties. Chem. Phys. Lett. 268: 352–358.

[11] Slanina Z., Sun M. L., Lee S. L., (1997), Computations of boron and boron nitride cages. Nanostruc. Mater. 8: 623–635.

[12] Zhu H. Y., Schmalz T. G., Klein D. J., (1997), Alternant boron nitride cages: a theoretical study. Int. J. Quantum Chem. 63: 393– 401.

[13] Alexandre S. S., Mazzoni M. S. C., Chacham H., (1999), Stability, geometry, and electronic structure of the boron nitride B36N36 fullerene. Appl. Phys. Lett. 75: 61–63.

[14] Fowler P. W., Rogers K. M., Seifert G., Terrones M., Terrones H., (1999), Pentagonal rings and nitrogen excess in fullerene-based BN cages and nanotube caps. Chem. Phys. Lett. 299: 359–367.

[15] Pokropivny V. V., Skorokhod V. V., Oleinik G. S., Kurdyumov A. V., Bartnitskaya T. S., Pokropivny A. V., Sisonyuk A. G., Sheichenko D. M., (2000), Boron nitride analogs of fullerenes (the fulborenes), nanotubes, and fullerites (the fulborenites). J. Solid State Chem. 154: 214–222.

[16] Strout D. L., (2000), Structure and stability of boron nitrides: isomers of B12N12.  J. Phys. Chem. A. 104: 3364–3366.

[17] Will G., Perkins P. G., (2001), Is there a new form of boron nitride with extreme hardness?. Diamond Relat. Mater. 10: 2010–2017.

[18] Alexandre S. S., Nunes R. W., Chacham H., (2002), Energetics of the formation of dimers and solids of boron nitride fullerenes. Phys. Rev. B. 66: 0854061-5.

[19] Monajjemi M., Lee V. S., Khaleghian M., Honarparvar B., Mollaamin F., (2010), Theoretical description of electromagnetic nonbonded interactions of radical, cationic, and anionic NH2BHNBHNH2 inside of the B18N18 nanoring. J. Phys. Chem. C. 114: 15315-15330.

[20] Monajjemi M., (2011), Quantum investigation of non-bonded interaction between the B15N15 ring and BH2NBH2 (radical, cation, anion) systems: A nano molecularmotor. Struct. Chem. 23: 551-580.

[21] Monajjemi M., Boggs J. E., (2013), A new generation of BnNn rings as a supplement to boron nitride tubes and cages. J. Phys. Chem. A. 117: 1670-1684.

[22] Monajjemi M., Khaleghian M., (2011), EPR Study of Electronic Structure of [CoF6]3- and B18N18 Nano Ring Field Effects on Octahedral Complex. J. Cluster Sci. 22: 673–692.

[23] Tran-Duc T., Thamwattana N., (2011), Modeling carbon nanostructures for filtering and absorbing polycyclic aromatic hydrocarbons. J. Comput. Theor. Nano. Sci. 8: 2072-2077.

[24] Mishra P. C., Yadav A., (2012), Polycyclic aromatic hydrocarbons as finite size models of graphene and grapheme nanoribbons: Enhanced electron density edge effect. Chem. Phys. 402: 56-68.

[25] Kuc A., Heine T., (2010), Graphene nanoflakes - structural and electronic properties. Phys. Rev. B. 81: 085430-085447.

[26] Becke A. D., (1993), Density-functional thermochemistry. iii. The role of exact exchange. J. Chem. Phys. 98: 5648–5652.

[27] Lee C., Yang W., Parr R. G., (1988), Development of the Colle-Salvetti correlation-energy for formula into a functional of the electron density. Phys. Rev. B. 37: 785-789.

[28] Mulliken R. S., (1955), Electronic Population Analysis on LCAOMO Molecular Wave Functions. J. Chem. Phys. 23: 1833-1840.