Acetone sensing properties of hierarchical WO3 core-shell microspheres in comparison with commercial nanoparticles

Document Type: Reasearch Paper

Authors

1 School of Engineering, Emerging Technologies, University of Tabriz, Tabriz, 5166616471, Iran

2 Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, Iran

10.7508/ijnd.2016.03.009

Abstract

In this work, hierarchical WO3 core-shell microspheres were synthesized via a facile template-free precipitation method. Gas sensing properties of the synthesized powder to acetone and some other volatile organic compounds were comparatively investigated with commercial WO3 nanoparticles. The synthesized and commercial powders were characterized by X-ray diffraction, scanning electron microscopy, particle size distribution analysis, Brunauer–Emmett–Teller and Barrette-Joyner-Halenda techniques. Gas sensors were fabricated by deposition of powders between/on interdigitated electrodes via sedimentation approach. The results show that both sensors are sufficiently sensitive to detect 1.8 ppm of acetone; diabetes diagnosis threshold in human exhaled breath. Indeed, the hierarchical based one is highly sensitive and more selective to acetone.

Keywords

Main Subjects


[1] Granqvist C. G., (1995), Handbook of inorganic electrochromic materials. Elsevier.

[2] Deb S. K., (2008), Opportunities and challenges in science and technology of WO3 for electrochromic and related applications. Sol. Energ. Mat. Sol. C. 92: 245-258.

[3] Zhang H., Chen G., Bahnemann D. W., (2009), Photoelectrocatalytic materials for environmental applications. J. Mater. Chem. 19: 5089-5121.

[4] Zhang L., Tang X., Lu Z., Wang Z., Li L., Xiao Y., (2011), Facile synthesis and photocatalytic activity of hierarchical WO3 core–shell microspheres. Appl. Surf. Sci. 258: 1719-1724.

[5] Afzal A., Cioffi N., Sabbatini L., Torsi L., (2012), NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives. Sensor. Actuat. B: Chem. 171: 25-42.

[6] Ponzoni A., Comini E., Sberveglieri G., Zhou, J., Deng S. Z., Xu N. S., (2006), Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Appl. Phys. Lett. 88: 203101.

[7] Kim S. J., Hwang I. S., Choi J. K., Lee J. H., (2011), Gas sensing characteristics of WO3 nanoplates prepared by acidification method. Thin Solid Films. 519: 2020-2024.

[8] Li X. L., Lou T. J., Sun X. M., Li Y. D., (2004), Highly sensitive WO3 hollow-sphere gas sensors. Inorg. Chem. 43: 5442-5449.

[9] Kanda K., Maekawa T., (2005), Development of a WO3 thick-film-based sensor for the detection of VOC. Sensor. Actuat. B: Chem. 108: 97-101.

[10] Shin J., Choi S. J., Youn D. Y., Kim I. D., (2012), Exhaled VOCs sensing properties of WO3 nanofibers functionalized by Pt and IrO2 nanoparticles for diagnosis of diabetes and halitosis. J. Electroceram. 29: 106-116.

[11] Li X., Zhang G., Cheng F., Guo B., Chen J., (2006), Synthesis, characterization, and gas-sensor application of WO3 nanocuboids. J. Electrochem. Soc. 153: H133-H137.

[12] Choi S. J., Lee I., Jang B. H., Youn D. Y., Ryu W. H., Kim I. D., (2013), Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath. Anal. Chemi. 85: 1792-1796.

[13] Wang L., Teleki A., Pratsinis S. E., Gouma, P. I., (2008), Ferroelectric WO3 nanoparticles for acetone selective detection. Chem. Mater. 20: 4794-4796.

[14] Chi X., Liu C., Liu L., Li Y., Wang Z., Bo X., (2014), Tungsten trioxide nanotubes with high sensitive and selective properties to acetone. Sensor. Actuat. B: Chem. 194: 33-37.

[15] Nelson N., Lagesson V., Nosratabadi A. R., Ludvigsson J., Tagesson C., (1998), Exhaled isoprene and acetone in newborn infants and in children with diabetes mellitus. Pediatr. Res. 44: 363-367.

[16] Greiter M. B., Keck L., Siegmund T., Hoeschen C., Oeh U., Paretzke H. G., (2010), Differences in exhaled gas profiles between patients with type 2 diabetes and healthy controls. Diabetes Technol. The. 12: 455-463.

[17] Deng C., Zhang J., Yu X., Zhang W., Zhang X., (2004), Determination of acetone in human breath by gas chromatography–mass spectrometry and solid-phase microextraction with on-fiber derivatization. J. Chromatogr. B. 810: 269-275.

[18] Smith D., Spanel P., Davies S., (1999), Trace gases in breath of healthy volunteers when fasting and after a protein-calorie meal: A preliminary study. J. Appl. Physiol. 87: 1584-1588.

[19] Smith D., Spanel P., Fryer A. A., Hanna F., Ferns G. A., (2011), Can volatile compounds in exhaled breath be used to monitor control in diabetes mellitus?. J. Breath Res. 5: 022001.

[20] Kalantarzadeh K., Fry B., (2007), Nanotechnology-enabled sensors. Springer Science & Business Media.

[21] Huang X. J., Choi Y. K., (2007), Chemical sensors based on nanostructured materials. Sensor. Actuat. B: Chem. 122: 659-671.

[22] Khiabani P. S., Hosseinmardi A., Marzbanrad E., Ghashghaie S., Zamani C., Raissi B., (2012), NO2 gas sensor fabrication through AC electrophoretic deposition from electrospun In2O3 nanoribbons. Sensor. Actuat. B: Chem. 162: 102-107.

[23] Comini E., Faglia G., Sberveglieri G., Pan Z., Wang Z. L., (2002), Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 81: 1869-1871.

[24] Oh E., Choi H. Y., Jung S. H., Cho S., Kim J. C., Lee K. H., (2009), High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation. Sensor. Actuat. B: Chem. 141: 239-243.

[25] Xu M. H., Cai F. S., Yin J., Yuan Z. H., Bie L. J., (2010), Facile synthesis of highly ethanol-sensitive SnO2 nanosheets using homogeneous precipitation method. Sensor. Actuat. B: Chem. 145: 875-878.

[26] Korotcenkov G., (2008), The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. R. 61: 1-39.

[27] Korotcenkov G., (2005), Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sensor. Actuat. B: Chem. 107: 209-232.

[28] Lee J. H., (2009), Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sensor. Actuat. B: Chem. 140: 319-336.

[29] Korotcenkov G., Cho B. K., (2011), Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey). Sensor. Actuat. B: Chem. 156: 527-538.