The Green route of Silver nanotechnology: Phytosynthesis and applications

Document Type: Review

Authors

1 Department of Biotechnology, School of life sciences, Vels University (VISTAS) Chennai-600117 India.

2 CoET, Baba Ghulam Shah Badshah University, Rajouri, Jammu & Kashmir – 18513 India.

10.7508/ijnd.2016.02.001

Abstract

Silver nanoparticles (AgNPs) are amongst the most investigated materials in nanotechnology in view of their unique physio-chemical features and applications in restorative science. Their progressive usages in different fields of science besides some predominant restrictions with conventional methods for their synthesis have demanded analysts to discover green courses for their creation. Biological methods are the preferred to combat with the issues concerned with the nanoparticle synthesis. Within this decade, thousands of plants have been screened to analyze their final impact on characterization and morphology of AgNPs compared to general approach of their synthesis. Phytosynthetic method is an eco-friendly route that can lead to an advanced production of silver nanoparticles with controlled morphology. We herein reviewed the present aspects of phytosynthesis of AgNPs and their importance in modern science. Moreover, overviews of proposed mechanisms in this technology have also been included, which ultimately provide some insights of their safe use and demand for further research.

Keywords

Main Subjects


[1] Heidarpour F., Ghani W. A., Ahmadun F. R., Sobri S., Zargar M., Mozafari M. R., (2010), Nano silver-coated polypropylene water filter: I. Manufacture by electron beam gun using a modified balzers 760 machine. Dig. J. Nanomater. Biostruct.  5: 787–796.
[2] Kvitek L.,  Panacek A.,  Soukupova J.,  Kolar M.,  Vecerova R.,  Prucek R.,  Holecova  M.,  Zboril R., (2008),  Effect of surfactants and polymers on stability and antibacterialactivity of silver nanoparticles [Nps].  J. Phys. Chem. 112: 5825–5834.
[3] Chaloupka K., Malam Y., Seifalian A. M., (2010), Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechno. l28: 580–588.
[4] Rai M., Yadav A., Gade A., (2009), Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27: 76–83.
[5] Krutyakov Y. A., Kudrinskiy A. A., Olenin A.Y., Lisichkin G.V., (2008), Synthesis and properties of silver nanoparticles: advances and prospects. Russ. Chem. Rev. 77: 233-236.
[6] Prow T.W., Grice J. E., Lin L. L., Faye R., Butler M., Becker W., Wurm E. M. T., Yoong C., Robertson T. A., Soyer H. P., Roberts M. S., (2011), Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev. 63: 470–491.
[7] Chaudhry Q., Castle L., (2011), Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci. Tech. 22: 595-598.
[8] Nair R., Varghese S. H., Nair B. G., Maekawa T., Yoshida Y., Sakthi Kumar D., (2010), Nanoparticulate material delivery to plants. Plant Sci. 179: 154–163.
[9] Kelly F. M., Johnston J. H., (2011), Colored and functional silver nanoparticle wool fiber composites. ACS Appl. Mater. Interfaces. 3: 1083–1092.
[10] Dankovich T. A., Gray D. G., (2011), Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ. Sci. Technol. 45: 1992–1998.
[11] Sharma V. K., Yngard R. A., Lin Y., (2009), Silver nanoparticles: Green synthesis and their microbial activities. Adv. Colloid and Interface Sci. 145: 83–96.
[12] Abdel-Halim E. S., Al-Deyab S. S., (2011), Utilization of hydroxypropyl cellulose for green and efficient synthesis of silver nanoparticles. Carbohyd. Polym. 86: 1615–1622.
[13] Singh M., Sinha I., Mandal R. K. (2009), Role of pH in the green synthesis of silver nanoparticles. Mater. Let. 63, 425–427.
[14] Kumar V., Yadav S. K., (2009), Plant mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. 84: 151–157.
[15] Mukunthan K., Balaji S., (2012), Cashew apple juice [Anacardium occidentale L.] speeds up the synthesis of silver nanoparticles. Int. J. Green Nanotechnol. 4: 71–79.
[16] Gericke M., Pinches A., (2006), Microbial production of gold nanoparticles. Gold Bull. 39: 22–28.
[17] Mahendran V., Gurusamy A., (2013),  Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci. 3: 217–223.
[18] Jiang X. C., Zeng Q. H., Yu A. B., (2009), Silver nanoplates: synthesis, growth mechanism and functional properties. In New Nanotech. Develop. 17: 145-182.
[19] Jiang X. C., Chen W. M., Chen C. Y., Xiong S. X., Yu A. B., (2011), Role of Temperature in the Growth of Silver Nanoparticles Through a Synergetic Reduction Approach. Nanoscale Res. Lett. 6: 32-36.
[20] Shashi P. D., Manu L., Heikki S., Mika S., (2010),  Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids and Surfaces B: Biointerfaces. 80: 26–33.
[21] Jin R., Cao Y., Metraux G. S., Schatz G. C., Mirkin C. A., (2003), Controlling anisotropic nanoparticle growth through plasmon excitation. Nature. 425: 487-490.
[22] Tang Z., Kotov N. A., Giersig M., (2002), Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science. 297: 237-240.
[23] Penn R. L., Banfield J. F., (1998), Imperfect oriented attachment: a mechanism for dislocation generation in defect-free nanocrystals. Science.  281: 969-971.
[24] Pillai Z. S., Kamat P. V., (2004), What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method. J. Phys. Chem. B. 108: 945-951.
[25] Song J. Y., Kim B. S., (2009), Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. 32: 79-84.
[26] Maidul Islam A. K. M., Mukherjee M., (2011), Effect of temperature in synthesis of silver nanoparticles in triblock copolymer micellar solution. J. Experim. Nanoscie. 6: 596–611.
[27] Vivek M., Senthil K. P., Steffi S., Sudha S., (2011),  Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avecenna J. Medical Biotech. 3: 143–148.
[28] Tripathy A., Raichur A. M., Chandrasekaran N., Prathna T. C., Mukherjee A., (2010), Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica [Neem] leave. J. Nanopart. Res. 12: 237–46.
[29] Jagtap U. B., Bapat V. A., (2013), Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. Seed extract and its antibacterial activity. Ind. Crops and Prod. 46: 132– 137.
[30] Paulraj K., Seung T. L., (2013), Synthesis and characterization of pullulan-mediated silver nanoparticles and its antimicrobial activities. Carbohyd. Polym. 97:  421– 428.
[31] Mock J. J., Barbic M., Smith D. R., Schultz D. A., Schultz S., (2002), Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116: 6755-6758.
[32] Nabikhan A., Kandasamy K., Raj A., Alikunhi N. M., (2010),  Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids Surf. B. Biointerf. 79: 488–493.
[33] Bar H., Bhui D. K., Sahoo G. P., Sarkar P., De S. P., Misra A., (2009), Green synthesis of silver nanoparticles using  latex of Jatropha curcas. Colloids Surf. A. Physicochem. Eng. Asp. 339: 134-139.
[34] Kumar K. P., Paul W., Sharma C. P., (2012), Green synthesis of silver nanoparticles with zingiber off icinale extract and study of its blood compatibility. Bio. Nano. Sci. 2: 144-152.
[35] Roopan S. M., Bharathi A., Prabhakarn A., Rahuman A. A., Velayutham K., Rajakumar G., Padmaja R. D., Lekshmi M., Madhumitha G., (2012),  Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 98: 86–90.
[36] Prasad T. N. V. K.V ., Elumalai E., (2011), Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac. J. Trop. Biomed. 1: 439–42.
[37] Vijayaraghavan K., Nalini S., Prakash N. U., Madhankumar D., (2012), One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Colloids Surf. B. Biointerf. 94: 114–117.
[38] Krishnaraj C., Jagan E., Rajasekar S., Selvakumar P., Kalaichelvan P., Mohan N., (2010),  Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B. Biointerf. 76: 50–56.
[39] Edison T. J. I., Sethuraman M. G., (2012),  Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 47: 1351–1357.
[40] Dubey S. P.,  Lahtinen M.,  Sillanpaa M., (2010), Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf. A. 605: 34–41.                                                       [41] Aruna J. K., Sashidhar R. B., Arunachalam J., (2012), Aqueous extract of gum olibanum [Boswellia serrata]: A reductant and stabilizer for the biosynthesis of antibacterial silver nanoparticles. Process Biochem. 47: 1516–1520.
[42] Ahamed M., Khan M., Siddiqui M., AlSalhi M. S., Alrokayan S. A. ., (2011),  Green synthesis, character ization and evaluation of biocompatibility of silver nanoparticles. Physica E. Low Dimens. Sys. Nanostruct. 43: 1266–1271.
[43] Kesharwani J., Yoon K. Y., Hwang J.,  Rai M. ., (2009),  Phytofabrication of silver nanoparticles by leaf extract of Datura metel: hypothetical mechanism involved in synthesis. J. Bionanosci. 3: 39–44.
[44] Chandran S. P., Chaudhary M., Pasricha R., Ahmad A., Sastry M., (2006),  Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol. Prog. 22: 577–583.
[45] Elumalai  E., Prasad T., Hemachandran J., Therasa S. V., Thirumalai T., David E., (2010),  Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J. Pharm. Sci. Res. 2: 549–554.
[46] Ahmad N., Sharma S., Singh V., Shamsi S., Fatma A., Mehta B., (2010),  Biosynthesis of silver  nanoparticles from Desmodium triûorum: A novel approach towards weed utilization. Biotechnol. Res. Int. 2: 44-50.
[47] Sheny D., Mathew J., Philip D. ., (2011),  Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim. Acta A. Mol. Biomol. Spec. 79: 254–262.
[48] Bankar A., Joshi B., Kumar A. R., Zinjarde S., (2010),  Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf. A. 368: 58–63.
[49] Akl M. A., Nidá M. S., Amany O. A., (2013),  Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Indus. Chem. 4: 29-35.
[50] Dwivedi A. D., Gopal K., (2010), Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A. 369: 27–33.
[51] Vijayakumar M., Priya K., Nancy F. T, Noorlidah A., Ahmed A. B. A., (2013),  Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Indus. Crops and Produc. 41: 235– 240.
[52] Singh A.,  Jain  D., Upadhyay M. K.,  Khandelwal N., Verma, H. N., (2010),  Green synthesis of silver nanoparticles using Argemone Mexicana leaf extract and evaluation of their antimicrobial activity. Dig. J. Nanomater. Biostruct. 5: 483-489.
[53] Banerjee J., Narendhirakannan R., (2011), Biosynthesis of silver nanoparticles from Syzygium cumini [L.] seed extract and evaluation of their in vitro antioxidant activities. Dig. J. Nanomater. Biostruct.  6: 961–968.
[54] Mondal S., Roy N., Laskar R. A., Sk I., Basu S., Mandal D., (2011), Biogenic synthesis of Ag, Au and bi- metallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ) leaves. Colloids Surf. B: Biointerf. 82: 497–504.
[55] Jacob S. J. P.,  Mohammed H., Murali K., Kamarudeen M., (2012), Synthesis of silver nanorods using Coscinium fenestratum extracts and its cytotoxic activity against Hep-2 cell line. Colloids and Surf. B: Biointerf. 98:  7– 11.
[56] Mittal A. K., Kaler A., Banerjee U. C., (2012), Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from ûower extract of Rhododendron dauricum. Nano Bio. Med. Eng. 4: 118–124.
[57] Santhoshkumar T., Rahuman A. A., Rajakumar G., Marimuthu S., Bagavan A., Jayaseelan C., (2011), Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and ûlariasis vectors. Parasitol Res. 108: 693–702.
[58] Ericka R. L., Ramón I. P., Rosa E. N., Ronaldo H. U., Judith T., Claudia I. P., Amir M., (2013),  Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res. Lett. 8: 318-322.
[59] Parashar U. K., Saxenaa P., Srivastava A., (2009), Bioinspired synthesis of silver nanoparticles. Dig. J. Nanomater. Biostruct.  4: 159–166.
[60] Patil R., Kokate M., Kolekar S., (2012), Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiûorum leaf extract and their antibacterial activity. Spectrochim Acta A: Mol. Biomol. Spectrosc. 91: 234–238.
[61] Debajit B., Priyadarshini D., Piyalee B., Anupam C., Yadav R. N. S., (2013), Ocimum sanctum mediated silver nano particles showed better antimicrobial activities compared to citrate stabilized silver nano particles against multidrug resistant bacteria. J. Pharm. Res. 7: 478-482.
[62] MubarakAli D., Thajuddin N., Jeganathan  K., Gunasekaran M., (2011), Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surf. B: Biointerf. 85: 360–365.
[63] Philip D., Unni C., Aromal S. A., Vidhu V. K., (2011), Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim. Acta Part A. 78: 899-904.
[64] Shankar S. S., Ahmad A., Sastry M., (2003), Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–31.
[65] Kaviya S., Santhanalakshmi J., Viswanathan B., Muthumary J., Srinivasan K., (2011), Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spec. Acta A. Mol. Biomol. Spec.  79: 594–598.
[66] Elavazhagan T., Arunachalam K. D., (2011), Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int. J. Nanomedicine. 6: 1265–1278.
[67] Ponarulselvam S., Panneerselvam C., Murugan K., Aarthi N., Kalimuthu K., Thangamani S., (2012), Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac. J. Trop. Biomed. 2: 574–580.
[68] Vilchis-Nestor A. R., Sánchez-Mendieta V., Camacho-López M. A., Gómez-Espinosa R. M., Arenas-Alatorre J. A., (2008), Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater. Lett.  62: 3103–3105.
[69] Kasthuri J., Veerapandian S., Rajendiran N., (2009), Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf. B. Biointerf.  68: 55–60.
[70] Ramamurthy C. H.,  Padma M., Daisy I., Mareeswaran R., Suyavaran A., Suresh Kumar M., Premkumar K., Thirunavukkarasu C., (2013), The extra cellular synthesis of gold and silver nanoparticles and their free radical scavenging and antibacterial properties. Colloids and Surf. B: Biointerf. 102: 808– 811.
[71] Rajakumar G., Abdul Rahuman A., (2011), Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against ûlariasis and malaria vectors. Acta Trop. 118: 196–203.
[72] Huang J.,  Li Q.,  Sun D.,  Lu Y., Su Y., Yang X., Wang H., Wang Y., Shao W., He N.,  Hong J.,  Chen C., (2007), Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 18: 105104–105114.
[73] Patil S. V., Borase H. P., Patil C. D., Salunke B. K., (2012), Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential. Appl. Biochem. Biotechnol. 167: 776–790.
[74] Veerasamy R., Xin T. Z., Gunasagaran S., Xiang T. F. W., Yang E. F. C., Jeyakumar N., (2010), Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi. Chem. Soc.15: 113–120.
[75] Gaurav P., Nitesh N., Gyana Prasuna R., (2013), Enhancement of antidandruff activity of  shampoo by biosynthesized silver nanoparticles from Solanum trilobatum plant leaf. Appl. Nanosci. 3: 431-436.
[76] Ankanna S., Prasad T. N. V. K. V., Elumalai E. K.,  Savithramma N., (2010),  Production of biogenic silver  nanoparticles using Boswellia ovalifoliolata stem bark. Dig. J. Nanomater. Biostruct. 5: 369–372.
[77] Vanaja M., Annadurai G., (2012), Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl. Nanosci. 3: 217-223.
[78] Udayasoorian C.,  Kumar K. V., Jayabalakrishnan R. M., (2011), Extracellular synthesis of silver nanoparticles using leaf extracts of Cassia auriculata. J. Nanomater. Biostruct. 6: 279-283.
[79] Geethalakshmi R., Sarada D. V. L., (2013), Characterization and antimicrobial activity of gold and silvernanoparticles synthesized using saponin isolated from Trianthemadecandra L. Ind. Crops Prod. 51: 107–115.
[80] Phillip D., (2011),  Mangifera indica leaf-assisted biosynthesis of welldispersed silver nanoparticles. Spectrochim. Acta,. Part A. 78: 327-332.
[81] Subramanian V., (2012), Green synthesis of silver nanoparticles using Coleus amboinicus lour, antioxitant activity and invitro cytotoxicity against Ehrlich’s Ascite carcinoma. J. Pharm. Res. 5: 1268–1272.
[82] Zaheer K., Javed I. H., Athar A. H., (2012), Shape-directing role of cetyltrimethylammonium bromide in the green synthesis of Ag-nanoparticles using Neem [Azadirachta indica] leaf extract. Coll. and Surf. B: Biointerf. 95: 229–234.
[83] Satyavani K.,  Ramanathan T.,  Gurudeekan S., (2011),  Green synthesis of silver nanoparticles using stem dried callus extract of bitter apple [Citrullus colocynthis]. Dig. J. Nanomater. Biostruct. 6: 1019-1024.
[84] Mallikarjuna K.,  Dillip G. R.,  Narasimha G.,  Sushma N. J.,  Raju B. D. P., (2012),  Phytofabrication and characterization of silver nanoparticles from Piper betle broth. Res. J. Nanosci. Nanotechnol. 2: 17-23.
[85] Rao M. L., Savithramma N., (2011),  Biological synthesis of silver nanoparticles using Svensonia Hyderabadensis leaf extract and   evaluation of their antimicrobial efficacy. J. Pharm. Sci. Res. 3: 1117-1121.
[86] Jain D., Daima H. K.,  Kachhwaha S.,  Kothari S. L., (2009), Synthesis of plantmediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Digest. J. Nanomater. Biostruc. 4: 557–563.
[87] Prasad K. S., Pathak D., Patel A.,  Dalwadi P.,  Prasad R., Patel P.,  Selvaraj K., (2011),  Biogenic synthesis of silver nanoparticles using Nicotiana tobaccum leaf extract and study of their antibacterial effect. Afr. J. Biotechnol. 10: 8122-8130.
[88] Deshpande R., Bedre D. M.,  Basavaraja S., Sawle B., Manjunath S. Y., Venkataraman A., (2010), Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids Surf. B: Biointerf. 79: 235- 240.
[89] Rajesh S., Raja D. P., Rathi J. M., Sahayaraj K., (2012),  Biosynthesis of silver nanoparticles using Ulva fasciata [Delile] ethylacetate extract and its activity against Xanthomonas campestris Pv. malvacearum. J. Biopest. 5: 119-128.
[90] Mondal S., Roy N., Laskar R. A., Sk I., Basu S., Mandal D., (2011),  Biogenic synthesis of Ag, Au and bi- metallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ) leaves. Colloids Surf. B: Biointerf. 82: 497–504.
[91] Newman D. K., Kolter R., (2000), Nature  A role for excreted quinones in extracellular electron transfer. Nature. 405: 94–97.
[92] Noruzi M., Zare D., Khoshnevisan K., Davoodi D., (2011), Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. Spectrochim. Acta A: Mol. Biomol. Spectrosc.79: 1461-1465.
[93] Kavitha  K. S.,  Syed B., Rakshith D., Kavitha H. U., Yashwantha R. H. C., Harini B. P.  Satish S., (2013), Plants as Green Source towards Synthesis of Nanoparticles. Int. Res. J. Biological. Sci.  2: 66-76.
[94] Kalimuthu K., Babu R. S., Venkataraman D., Bilal M., Gurunathan S., (2008), Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B: Biointerf. 65: 150–153.
[95] Ahmad N., Sharma S., Singh V., Shamsi S., Fatma A., Mehta B., (2010),  Biosynthesis of silver  nanoparticles from Desmodium triûorum: a novel approach towards weed utilization. Biotechnol. Res. Int. 2: 24-29.
[96] Duran N., Marcato P. D., Alves O. L., De Souza G. H., Esposito E., (2005), Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains J. Nanobiotechnol. 3: 8-13.
[97] Shahverdi A., Minaeian S., Shahverdi H. R., Jamalifar H., Nohi A. A. ., (2007),  Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem. 42: 919–923.
[98] Gengana R. M., Ananda K., Phulukdareeb A., Chuturgoon A., (2013),  A549 lung cell line activity of biosynthesized silver nanoparticles using Albizia adianthifolia  leaf. Colloids Surf. B: Biointerf. 105: 87–91.
[99] Miura N., Shinohara Y., (2009), Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem. Biophys. Res. Commun. 390: 733–737.
[100] Hsin Y. H., Chen C. F., Huang S., Shih T. S., Lai P. S., Chueh P. J., (2008), The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 179: 130–139.
[101] Asha R. P. V., Low K. M. G., Hande M. P., Valiyaveettil S., (2009), Cytotoxicity and genotoxicity of silver nanopar.ticles in human cells. ACS Nano 3: 279–290.
[102] Sukirtha R., Priyanka K., Antony J. J., Kamalakkannan S., Thangam R., Gunasekaran P., (2012a),  Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedaracha against in vitro HeLa cell lines and lymphoma mice model. Process. Biochem. 47: 273–279.
[103] Sukirtha R., Priyanka K., Antony J. J., Kamalakkannan S., Thangam R., Gunasekaran P., (2012b),  Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedaracha against in vitro HeLa cell lines and lymphoma mice model. Process. Biochem. 47: 273–279.
[104] Jacob S., Finub J., Narayanan A., (2011), Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf. B: Biointerf. 91: 212–214.
[105] Ghassan M. S., Wasnaa H. M., Thorria  R. M., Ahmed A. A. A., Abdul A. H. K., Abu B. M., (2013), Green synthesis, antimicrobial and cytotoxic effects of silver nanoparticles using Eucalyptus chapmaniana leaves extract. Asian Pac. J. Trop. Biomed. 3: 58-63.
[106] Gengana R. M., Ananda K., Phulukdareeb A., Chuturgoon A., (2013),  A549 lung cell line activity of biosynthesized silver nanoparticles using Albizia adianthifolia  leaf. Colloids Surf. B: Biointerf. 105: 87–91.
[107] Moaddab S., Ahari H., Shahbazzadeh D., Motallebi A. A., Anvar A. A., Rahman-Nya J., Shokrgozar M. R., (2011),  Toxicity study of nanosilver [Nanocid] on osteoblast cancer cell line. Int. Nano Lett. 1: 11-16.
[108] Dipankar C.,   Murugan S., (2012), The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf. B: Biointerf. 98: 112–119.
[109] Logeswari P., Silambarasan S., Abraham J., (2013), Ecofriendly synthesis of silver nanoparticles from commercially available plant powders and their antibacterial properties. Scientia Iranica, Transactions F: Nanotech. 20: 1049–1054.
[110] Geethalakshmi R., Sarada D. V. L., (2013), Characterization and antimicrobial activity of gold and silvernanoparticles synthesized using saponin isolated from Trianthemadecandra L. Ind. Crops and Products. 51: 107– 115.
[111] Debajit B., Priyadarshini D., Piyalee B., Anupam C., Yadav R. N. S., (2012),  Ocimum sanctum mediated silver nano particles showed better antimicrobial activities compared to citrate stabilized silver nano particles against multidrug resistant bacteria. J. Pharm. Res. 7: 478-482.
[112] Shrivastava S., Bera T., Roy A., Singh G., Ramachandrarao P., Dash D., (2007),  Characterization of enhanced antibacterial effect of novel silver nanopartides. Nanotechnology 18: 225103-225107.
[113] Padma S., Vankar  D. S., (2012),  Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Appl. Nanosci. 2: 163–168.
[114] Lamsal K., Kim S. W., Jung J. H., Kim Y. S., (2011),  Inhibition Effects of Silver Nanoparticles against Powdery Mildews on Cucumber and Pumpkin. Mycobiology 39: 26-32.
[115] Jo Y. K., Kim B. H., (2009),  Antifungal activity of silver ions and nanoparticles on phytopathogen fungi. Plant Dis. 93: 1037–1043.
[116] Park H. J., Kim S. H., Kim H. J., Choi S. H., (2006), A new composition of nanosized silica–silver for control of various plant diseases. Plant Pathol. J. 22: 295–302.
[117] Min J. S.,  Kim S. U., Kim S. W., Jung J. H., Lamsal K., Kim S. B., Jung M., Lee Y. S., (2009), Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol. J. 25: 376–380.
[118] Kim S. W., Kim K. S., Lamsal K., Kim Y. J., Kim S. B., Jung M., Sim S. J., Kim H. S., Chang S. J., Kim J. K., (2009),  An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol. Biotechnol. 19: 760–764.
[119] Jaidev L. R., Narasimha G., (2010), Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf. B. 81: 430–433.
[120] Griffitt R. J., Luo J., Gao J., Bonzongo J. C., Barber D. S., (2008),  Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem. 27: 1972–1978.
[121] Griffitt R. J., Hyndman K., Denslow N. D., Barber D. S., (2009), Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol. Sci. 107: 404–415.
[122] Wise Sr J. P., Goodale B. C.,Wise S. S., Craig G. A., Pongan A. F.,Walter R. B., Thompson D., Ng A. K., Aboueissa A. M., Mitani H., Spalding M. J., Mason M. D., (2010),  Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat. Toxicol. 97: 34–41.
[123] Park B. S. Y., Choi J., (2010), Geno- and ecotoxicity evaluation of silver nanoparticles in freshwater crustacean Daphnia magna. Environ. Eng. Res. 15: 23–27.
[124] Park A. E. J., Yi J., Kim Y., Choi K., Park K., (2010),  Silver nanoparticles induce cytotoxicity by a Trojan-horse typemechanism. Toxicol. In Vitro 24: 872–878.
[125] Nair P. M. G., Park S. Y., Lee S. W., Choi J., (2011),  Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. Aquat. Toxicol. 101: 31–37.
[126] Anita K. P., Ashley B.,  La B. M., Paul B. T., (2012), Genotoxicity of Silver Nanoparticles in Vicia faba: A Pilot Study on the Environmental Monitoring of Nanoparticles. Int. J. Environ. Res. Public Health. 9: 1649-1662.
[127] Kumari M., Mukherjee A., Chandrasekaran N., (2009), Genotoxicity of silver nanoparticles in Allium cepa. Sci. Total Environ. 407: 5243–5246.
[128] Stampoulis D., Sinha S. K., White J. C., (2009),  Assay-dependent phytotoxicity of nanoparticles to plants, Environ. Sci. Technol. 43: 9473–9479.
[129] Bankar A., Joshi B., Kumar A. R., Zinjarde S., (2010), Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf. A. 368: 58–63.
[130] Shahjahan M., Vani G., Shyamaladevi C. S., (2005), Effect of Solanum trilobatum on the antioxidant status during diethyl nitrosamine induced and phenobarbital promoted hepatocarcinogenesis in  rat. Chem. Biol. Interact. 156: 113–123.                                                                                                                                                           [131] Gaurav P., Nitesh N., Gyana Prasuna R., (2013), Enhancement of antidandruff activity of  shampoo by biosynthesized silver nanoparticles from Solanum trilobatum plant leaf. Appl. Nanosci. 3: 431-436.
[132] Suman T. Y., Elumalai D., Kaleena P. K., Radhika Rajasree S. R., (2012), GC–MS analysis of bioactive components and synthesis of silver nanoparticle using Ammannia baccifera aerial extract and its larvicidal activity against malaria and filariasis vectors. Ind. Crops and Prod. 47: 239– 245.
[133] Rajakumar G., Abdul Rahuman A., (2011), Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against ûlariasis and malaria vectors. Acta Trop. 118: 196–203.
[134] Hui M. N., Hong N. L., Rahman J., (2006), Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B. 110: 16248–16253.
[135] Morones J. R.,  Elechiguerra J. L., Camacho A., Ramirez J. T., (2005), The bactericidal effect of silver nanoparticles. Nanotech. 16: 2346–2353.
[136] Dragieva I., Stoeva S., Stoimenov P., Pavlikianov E., Klabunde K., (1999),  Complex formation in solutions for chemical synthesis of nanoscaled particles prepared by borohydride reduction process. Nanostruc. Mater. 12: 267–270.
[137] Hamouda T., Myc A.,  Donovan B.,  Shih A.,  Reuter J. D.,  Baker J. R., (2001),  A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiolog.  Res. 156: 1–7.
[138] Dibrov P., Dzioba J., Gosink K. K., Hase C. C., (2002),  Chemiosmotic mechanism of antimicrobial activity of Ag[+] in Vibrio cholerae. Antimicrob. Agents. Chemother. 46: 2668–2670.
[139] Lara H. H., Ayala-Nuaez N. V., Ixtepan-Turrent L., Rodriguez-Padilla C., (2010),  Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 26: 615–621.
[140] Kumar V. S., Nagaraja B. M., Shashikala V., Padmasri A. H.,  Madhavendra S. S., Raju B. D., (2004), Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water. J. Mol. Catal. A. 223: 313–319.
[141] Feng Q. L., Wu J., Chen G. Q., Cui F. Z., Kim T. N., Kim J. O., (2000),  A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52: 662–668.
[142] Holt B., Bard A. J., (2005),  Interaction of silver [I] ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry 44: 13214–13222.
[143] McDonnell G., Russell A. D., (2009), Antiseptics and Disinfectants: Activity, Action, and Resistance Clin. Microbiol. Rev. 12: 147–179.
[144] Sondi I., Salopek-Sondi B., (2012), Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Interf. Sci. 275: 177–182.
[145] Lin Y. E., Vidic R. D., Stout J. E., McCartney C. A., Yu V. L., (1998),  Inactivation of Mycobacterium avium by copper and silver ions. Water Res. 32: 1997–2000.
[146] Lok C., (2006), Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5: 916–924.
[147] Holt B., Bard A. J., (2005),  Interaction of silver [I] ions with the respiratory chain of Escherichia coli: Asn electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag+. Biochemistry. 44: 13214–13222.
[148] Liau S. Y., Read D. C., Pugh W. J., Furr J. R., Russell A. D., (1997), Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol. 25: 279–283.
[149] Shankar S. S.,  Rai A.,  Ankamwar B.,  Singh A.,  Ahmad A.,  Sastry M., (2004),  Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3: 482–488.