Synthesis, characterization and optical band gap of Lithium cathode materials: Li2Ni8O10 and LiMn2O4 nanoparticles

Document Type: Reasearch Paper


1 Department of Chemistry, Mahabad Branch, Islamic Azad University, Mahabad, Iran

2 Department of Chemistry, Naragh Branch ,Islamic Azad University, Naragh, Iran



Li2Ni8O10 and LiMn2O4 Nanoparticles as cathode materials of lithium ion battery, were successfully synthesized using lithium acetate, nickel and manganese acetate as Li, Ni and Mn sources and stearic acid as a complexing reagent. The structure of the obtained products were characterized by FT-IR and XRD. The shape, size and distribution of the Li2Ni8O10 and LiMn2O4 nanoparticles were observed by SEM.Optical band gap and magnetic properties were determined by Diffuse Reflectance Spectroscopy (DRS) and Vibrating Sample Magnetometer (VSM). Li2Ni8O10 and LiMn2O4 spinels were identified as the main crystalline phases. The particles size of both, Li2Ni8O10 and LiMn2O4 nanoparticles, is around 24 to 32 nm. Optical band gap of Li2Ni8O10 and LiMn2O4 are 1.40 eV and 1.16 eV, respectively. Therefore, lithium nickel and lithium manganese oxide nanoparticles can be used as a semiconductor materials in electrical devices. VSM curve showed paramagnetic behaviour of LiMn2O4 nanoparticles. Moreover, color parameters were obtained by colorimetric analysis of LiMn2O4 indicating characteristic values of L*=25.820, a*=1.607 and b*= -1.143.


Main Subjects

[1] Guyomard D., Tarascon J. M., (1992), Li metal-free rechargeable LiMn2O4 carbon cells: their understanding and optimization. J. Electrochem. Soc. 139: 937-948.

[2]  Wan C, Nuli Y, Zhuang J, Jiang Z., (2002), Synthesis of spinel LiMn2O4 using direct solid state reaction. Mater. Lett. 56: 357-363.

[3]  Sahan H., Goktepe H., Patat S., Ulgen A., (2011), Improvement of the electrochemical performance of LiMn2O4 cathode active material by lithium borosilicate (LBS) surface coating for lithium-ion batteries. J. Alloys. Compd. 509: 4235-424.

[4]  Ahn D. S., Song M.Y., (2000), Variations of the electrochemical properties of LiMn2O4 with synthesis conditions. J. Electrochem. Soc. 147: 874-879.

[5]  Huo J., Wei M., (2009), Characterization and magnetic properties of nanocrystalline nickel ferrite synthesized by hydrothermal method. Mater. Lett. 63: 1183-1184.

[6]  Li X, Wang G., (2009), Low-temperature synthesis and growth of super paramagnetic Zn0.5Ni0.5Fe2O4 nanosized particles. J. Magn. Magn. Mater. 321: 1276-1279.

[7]  Dai Z. F, Liu G. Y., Wang B. S., Guo D. W., Huang Z. L., Guo J. M., (2008), Solution combustion synthesis of LiMn2O4 powder by using glucose as fuel in acetate system. J. Funct. Mater. 39: 254-256.

[8]  Lee K. M, Choi H. J, Lee J. G., (2001), Combustion synthesis of spinel LiMn2O4 cathode materials for lithium secondary batteries. J. Mater. Sci. Lett. 20: 1309-1311.

[9]  Yang W. S, Zhang G., Xie J. Y., Yang L. L., Liu Q. G., (1999), A combustion method to prepare spinel phase LiMn2O4 cathode materials for lithium-ion batteries. J. Power Sources. 81-82: 412-415.

[10]  Passerini S., Coustier F., Giorgetti M., Smyrl W. H., (1999), Li–Mn–O aerogels. Electrochem. Solid-State Lett. 2 (10): 483–-485.

[11] Naghash A. R., Lee J. Y., (2000), Preparation of spinel lithium manganese oxide by aqueous co-precipitation. J. Power Sources. 85: 284-293.

[12] Xia Y.,Takeshige H., Noguchi H., Yoshio M., (1995), Studies on a Li–Mn-O spinel system (obtained by meltimpregnation) as a cathode for 4V lithium batteries. Part 1. Synthesis and electrochemical behaviour of LixMn2O4. J. Power Sources. 56: 61-67.

[13] Yang W., Liu Q., Qiu W., Lu S., Yang L., (1999), A citric acid method to prepare LiMn2O4 for lithium–ion batteries. Solid State Ionics. 121: 79-84.                                                     

[14] Hon Y. M., Fung K. Z., Hon M. H., (2001), Synthesis and characterization of Li1+Mn2-O4 powders prepared by citric acid gel process. J. Eur. Ceram. Soc. 21: 515-522.

[15] Tsumura T., Shimizu A., Inagaki M., (1997), Synthesis of LiMn2O4 spinel via tartrates. J. Power Sources. 3: 593-599.

[16] Pyun S. I., Choi Y. M., Jeng I. D., (1997), Effect of the lithium content on electrochemical lithium intercalation into amorphous and crystalline powdered Li1+Mn2O4 electrodes prepared by sol-gel method. J. Power Sources. 68: 593-599.

[17] Liu W., Farrington G. C., Chaput F., Dunn B., (1996), Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by Pechini process. J. Electrochem. Soc. 143: 879-884.

[18] Ahn D. S., Song M. Y., (2000), Variations of the electrochemical properties of LiMn2O4 with synthesis conditions. J. Electrochem. Soc. 147: 874-879.

[19] Yang W. S., Zhang G, Xie J. Y., Yang L. L., Liu Q. G., (1999), A combustion method to prepare spinel phase LiMn2O4 cathode materials for lithium-ion batteries.W J. Power Sources. 82: 412-415.

[20] Gao Y., Dahn J. R., (1996), Synthesis and characterization of Li1+xMn2-xO4 for Li–ion battery applications. J. Electrochem. Soc. 143: 100-114.                                                                  [21] Endres P., Fuchs B., Sack S. K., Brandt K., Becker G. F., Praas H. W., (1996), Influence of processing on the Li:Mn ratio in spinel phases of the system Li1+xMn2-xO4-. Solid State lonics. 89: 221-231.

[22] Enhessari M., (2013), Synthesis, characterisation and optical band gap of Cr1.3Fe0.7O3 nanopigments. Pigment and Resin Technol. 42: 347-352.

[23] Hon Y. M., Lin S. P., Fung K. Z., Hon M. H., (2002), Synthesis and characterization of nano-LiMn2O4 powder by tartaric acid gel process. J. Europ. Ceramic Soc. 22: 653-660.

[24] Tarascon J. M., Mckinnon W. R., Coowar F., Bowmer T. N., Amatucci G., Guyomard D., (1994), Synthesiscondition and oxygen. J. Electrochem. Soc. 141: 1421-1427.

[25] Seyedahmadian M., Houshyarazar S., Amirshaghaghi A., (2013), Synthesis and Characterization of Nanosized of Spinel LiMn2O4 via Sol-gel and Freeze Drying Methods. Bull. Korean Chem. Soc. 34, No. 2.

[26] Zhou X., Chen M., Xiang M., Bai H., Guo J., (2013), Solidstate combustion synthesis of spinel LiMn2O4 using glucose as a fuel. Ceramics Int. 39: 4783-4789.

[27] Yang T., Bian J., Liang H., Sun J., Wang H., Liu W., Chang W., (2013), High quality p-type ZnO films grown by low pressure plasma-assisted MOCVD with N 2 O rf plasma doping source. J. Mater. Process. Technol. 204: 481-485.

[28] Bagnall D. M., Chen Y. F., Zhu Z., Yao T., Koyama M., Shen M. Y., Goto T., (1997), Optically pumped lasing of ZnO at room temperature. Appl. Phys. Lett. 70: 2230-2232.
[29] Aoki T., Hatanaka Y., Look D. C., (2000), ZnO diode fabricated by excimer-laser doping. Appl. Phys. Lett. 76: 3257-3259.

[30] Boemare C. T., Monteiro M. J., Soares J. G., Guilherme Alves E., (2001), Photoluminescence studies in ZnO samples. Physica B. 308: 985-988.
[31] Escobedo M. A., Sa´nchez M. E., Pal U., (2006), Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista Mexicana. 53: 18-22.
[32] Ouyang C., Deng H., Ye Z., Lei M., Chen L., (2006), Pulsed laser deposition prepared LiMn2O4 thin film. Thin Solid Films. 503: 268 - 271.

[33] Papadakis S. E., Abdul-Malek S., Kamdem R. E., Yam K. L., (2000), A versatile and inexpensive technique formeasuring color of foods. Food Technol. 54: 48-51.