Nonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach

Document Type : Reasearch Paper


Department of Mechanical Engineering, University of Guilan, P.O. Box 3756, Rasht, Iran



In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dynamics (MD) simulations are performed to obtain the critical axial buckling loads of (8,8) armchair SWCNTs with different types of end conditions. Through comparison of the results obtained from the present analytical solution and the ones from molecular dynamics simulations, the appropriate values of nonlocal parameter are proposed for SWCNTs with different kinds of boundary conditions. The effects of nonlocal parameter and boundary conditions on the critical buckling load are also examined. Moreover, in spite of the uncertainty that exists in defining the in-plane stiffness and bending rigidity of nanotube, by adjusting the nonlocal parameter, the present nonlocal shell model is shown to be capable of predicting the MD simulations results.


Main Subjects

[1]  Radushkevich L. V., and Lukyanovich V. M., (1952), Ostrukture ugleroda, Obrazujucegosja pri termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Zurn. Fisic.Chim. 26: 88-95.
[2]  Iijima S., (1991), Helical Microtubes of Graphitic Carbon, Nature. (London), 354: 56-58.
[3]  Nardelli M. B., Bernholc J., (1999), Mechanical Deformations and Coherent Transport in Carbon Nanotubes. Phys. Rev. B. 60: 16338-16341.
[4]  Falvo M. R., Clary G. J., Taylor R. M., Chi V., Brooks F. P., Washburn S., Superfine R., (1997), Bending and buckling of carbon nanotubes under large strain. Nature. 389: 582-584.
[5]  Yao X., Han, Q., (2006), Buckling Analysis of Multiwalled Carbon Nanotubes Under Torsional Load Coupling With Temperature Change. ASME. J. Eng. Mater. Technol. 128: 419-427.
[6]  Lu W. B., Wu J., Feng X., Hwang K. C., Huang Y., (2010), Buckling Analyses of Double-Wall Carbon Nanotubes: A Shell Theory Based on the Interatomic Potential. ASME. J. Appl. Mech. 77: 061016-19.
[7]  He X. Q., Kitipornchai S., Wang C. M., Xiang Y., Zhou Q., (2010), A Nonlinear Van Der Waals Force Model for Multiwalled Carbon Nanotubes Modeled by a Nested System of Cylindrical Shells. ASME. J. Appl. Mech. 77: 061006-11.
[8]  Ansari R., Hemmatnezhad M., Rezapour J., (2011), The Thermal Effect on Nonlinear Oscillations of Carbon Nanotubes with Arbitrary Boundary Conditions. Curr. Appl. Phys. 11: 692-697.
[9]  Pantano A., Boyce M. C., Parks D. M., (2004), Mechanics of Axial Compression of Single and Multi-Wall Carbon Nanotubes. ASME. J. Eng. Mater. Technol. 126: 279-284.
[10] Behfar K., Naghdabadi R., (2005), Nanoscale Vibrational Analysis of a Multi-Layered Graphene Sheet Embedded in an Elastic Medium. Compos. Sci. Technol. 65: 1159-1164.
[11] Han Q., Yao X., Li L., (2006), Theoretical and Numerical Study of Torsional Buckling of Multiwall Carbon Nanotubes. Mech. Adv. Mater. Struct.13: 329-337.
[12] Wang C. M., Tan V. B. C., Zhang Y. Y., (2006), Timoshenko Beam Model for Vibration Analysis of Multi-Walled Carbon Nanotubes. J. Sound Vib. 294: 1060-1072.
[13] Dong K., Liu B. Y., Wang X., (2008), Wave Propagation in Fluid-Filled Multi-Walled Carbon Nanotubes Embedded in Elastic matrix. Comput. Mater. Sci. 42: 139-148.
[14] Wang L., Ni Q., Li M., Qian Q., (2008), The Thermal Effect on Vibration and Instability of Carbon Nanotubes Conveying Fluid. Physica E. 40: 3179-3182.
[15] Ansari R., Hemmatnezhad M., Ramezannezhad H., (2009), Application of HPM to the Nonlinear Vibrations of Multiwalled Carbon Nanotubes. Numer. Meth. Part. D. E. 26: 490-500.
[16] Ansari R., Rouhi S., (2010), Atomistic Finite Element Model for Axial Buckling of Single-Walled Carbon Nanotubes. Physica E. 43: 58-69.
[17] Ansari R., Hemmatnezhad M., (2011), Nonlinear Vibrations of EmbeddedMultiwalled Carbon Nanotubes Using a Variational Approach. Math. Comput. Model. 53: 927-938.
[18] Eringen A. C., (1983), On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves. J. Appl. Phys. 54: 4703-4710.
[19] Eringen A. C., (2002), Nonlocal Continuum Field Theories, Springer, New York. 462.
[20] Peddieson J., Buchanan G. R., McNitt R. P., (2003), Application of Nonlocal Continuum Models to
Nanotechnology. Int. J. Eng. Sci. 41: 305-312.
[21] Sudak L. J., (2003), Column Buckling of Multiwalled Carbon Nanotubes Using Nonlocal Continuum Mechanics. J. Appl. Phys. 94: 7281-7287.
[22] Wang Q., Varadan V. K., (2006), Vibration of Carbon Nanotubes Studied Using Nonlocal Continuum Mechanics. Smart Mater. Struct. 15: 659-666.
[23] Wang Q., Wang C. M., (2007), The Constitutive Relation and Small Scale Parameter of Nonlocal Continuum Mechanics for Modeling Carbon Nanotubes. Nanotech. 18: 075702.
[24] Li R., Kardomateas G. A., (2007), Thermal Buckling of Multi-Walled Carbon Nanotubes by Nonlocal Elasticity. ASME. J. Appl. Mech. 74: 399-405.
[25] Hu Y. G., Liew K. M., Wang Q., He X. Q., Yakobson, B. I., (2008), Nonlocal Shell Model for Elastic Wave Propagation in Single- and Double-Walled Carbon Nanotubes. J. Mech. Phys. Solids. 56: 3475-3485.
[26] Adali S., (2008), Variational Principles for Multi-Walled Carbon Nanotubes Undergoing Buckling Based on Nonlocal Elasticity Theory. Phys. Lett. A. 372: 5701-5705.
[27] Shen H. S., Zhang C. L., (2010), Nonlocal Shear Deformable Shell Model for Post-Buckling of Axially Compressed Double-Walled Carbon Nanotubes Embedded in an Elastic Matrix. ASME. J. Appl. Mech. 77: 041006.
[28] Ansari R., Rajabiehfard R., Arash B., (2010), Nonlocal Finite Element Model for Vibrations of Embedded Multi-Layered Graphene Sheets. Comput. Mater. Sci. 49: 831-838.
[29] Arash B., Ansari, R., (2010), Evaluation of Nonlocal Parameter in the Vibrations of Single-Walled Carbon Nanotubes with Initial Strain. Physica E. 42: 2058-2064.
[30] Ansari R., Sahmani S., Arash B., (2010), Nonlocal Plate Model for Free Vibrations of Single-Layered Graphene Sheets. Phys. Lett. A. 375: 53-62.
[31] Ansari R., Faghih Sh. M., Mohammadi V., Gholami R., Rouhi H., (2015), Buckling and Postbuckling of Single-Walled Carbon Nanotubes Based on a Nonlocal Timoshenko Beam Model. ZAMM. 95: 939-951.
[32] Ansari R., Rouhi H., (2011), Analytical Treatment of the Free Vibration of Single-Walled Carbon Nanotubes Based on the Nonlocal Flügge Shell Theory ASME. J. Eng. Mater. Technol. 134: 011008-011016.
[33] Flügge W., (1960), Stresses in Shells, Springer, Berlin.
[34] Loy C., T., Lam K., Y., (1997), Vibration of Cylindrical Shells with Ring Support. Int. J. Mech. Sci. 39: 445-471.
[35] Batra R. C., Gupta S. S., (2008), Wall Thickness and Radial Breathing Modes of Single-Walled Carbon Nanotubes. ASME. J. Appl. Mech. 75: 061010-14.
[36] Wang C. Y., Zhang L. C., (2008), An Elastic Shell Model for Characterizing Single-Walled Carbon Nanotubes. Nanotechnol. 19: 195704-09.
[37] Yakobson B. I., Brabec C. J., Bernholc J., (1996), Nanomechanics of Carbon Tubes: Instability Beyond Linear Response. Phys. Rev. Lett. 76: 2511-2514.
[38] Yan Y., Wang W. Q., Zhang L. X., (2010), Nonlocal Effect on Axially Compressed Buckling of Triple-Walled Carbon Nanotubes Under Temperature Field. Appl. Math. Model. 34: 3422-3429.
[39] Ansari R., Sahmani S., Rouhi H., (2011), Rayleigh.Ritz Axial Buckling Analysis of Single-Walled Carbon Nanotubes with Different Boundary Conditions. Phys. Lett. A. 375: 1255-1263.
[40] Wang C. Y., Zhang L. C., (2008), A Critical Assessment of the Elastic Properties and Effective Wall Thickness of Single-Walled Carbon Nanotubes. Nanotechnol. 19: 075705.
[41] Ru C. Q., (2000), Effective Bending Stiffness of Carbon Nanotubes. Phys. Rev. B. 62: 9973-9976.