Sulfur modified ZnO nanorod as a high performance photocatalyst for degradation of Congoredazo dye

Document Type: Reasearch Paper

Authors

1 Nuclear Science and Technology Research Institute, 11365/8486 Tehran, Iran.

2 Department of Chemistry, Tarbiat Modares University, 14115-175 Tehran, Iran.

10.7508/ijnd.2015.04.011

Abstract

Sol-gel derived sulfur modified and pure ZnO nanorod were prepared using zinc chloride and thiocarbamide as raw materials. Prepared nanorods were characterized by means of X-ray diffraction (XRD), thermogravimetry- differential scanning calorimetry (TG–DSC), UV- Vis absorption spectroscopy, Brunauer Emmett Teller (BET) specific surface area and Barrett Joyner Halenda (BJH) pore size distribution analyses, scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDX) analyses. The band gaps of sulfur modified and pure ZnO were estimated from UV-Vis spectroscopy data to be 2.75 and 3.18 ev, respectively. The specific surface area of sulfur modified ZnO nanorod calculated to be 2.63 m2/g using BET method. Pore size distribution curve of the mater obtained via BJH method revealed that the diameter of the pores is from several to more than 20nm. Photocatalytic activity of synthesized sulfur modified and pure ZnO nanorod were tested for degradation of Congoredazo dye under ultraviolet and visible light. The results revealed that the sulfur modified ZnO nanorod has excellent photocatalytic activity towards Congored under visible light illumination.

Keywords

Main Subjects


 

[1]      Zhang H., Tao Z., Xu W., Lu S., Yuan F., (2012), First-principles study of dopants and defects in S-doped ZnO and its effect on photocatalytic activity. Comp. Mater. Sci. 58: 119-124.

[2]      Zhang R., Gao L., Zhang Q., (2004), Photodegradation of surfactants on the nanosized TiO2 prepared by hydrolysis of the alkoxide titanium. Chemosphere. 54: 405-411.

[3]      Janitabar-Darzi S., Mahjoub A. R., (2009), Investigation of phase transformations and photocatalytic properties of sol–gel prepared nanostructured ZnO/TiO2 composite. J. Alloys Comp. 486: 805-808.

[4]      Sun J. H., Dong S., Feng J., Yin X., Zhao X., (2011), Enhanced sunlight photocatalytic performance of Sn-doped ZnO for Methylene Blue degradation. J. Molec. Catal. A: Chem. 335: 145-150.

[5]      Wei F., Ni L., Cui P., (2008), Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity. J. Hazard. Mater. 156: 135-140.

[6]      Wang X. H., Liu S., Chang P., Tang Y., (2007), Synthesis of sulfur-doped ZnO nanowires by electrochemical deposition. Mater. Sci. Sem. Process. 10: 241-245.

[7]      Vaezi M. R., (2008), Two-step solochemical synthesis of ZnO/TiO2 nano-composite materials. J. Mate. Process. Technol. 205: 332-337.

[8]      Komai Y., Okitsu K., Nishimura R., Ohtsu N., Miyamoto G., Furuhara T., Semboshi S., Mizukoshi Y., Masahash N., (2011), Visible light response of nitrogen and sulfur co-doped TiO2 photocatalysts fabricated by anodic oxidation. Catal. Today. 164: 399-403.

[9]      Yang X., Cao C., Erickson L., Hohn K., Maghirang R., Klabunde K., (2009), Photo-catalytic degradation of Rhodamine B on C-, S-, N-, and Fe-doped TiO2 under visible-light irradiation. Appl. Catal. B: Environ. 91: 657-662.

[10]  Liu X., Liu Z., Zheng J., Yan X., Li D., Chen S., Chu W., (2011), Characteristics of N-doped TiO2 nanotube arrays by N2-plasma for visible light-driven photocatalysis. J. Alloys. Comp. 509: 9970-9976.

[11]  Wu X., Wu D., Liu X., (2009), Optical investigation on sulfur-doping effects in titanium dioxide nanoparticles. Appl. Phys. A-Mat. Sci. Process. 97: 243-248.

[12]  Bidaye P. P., Khushalani D., Fernandes J. B., (2010), A simple method for synthesis of S-doped TiO2 of high photocatalytic activity. Catal. Lett. 134: 169-174.

[13]  Panda N. R., Acharya B. S., Nayak P., Bag B. P., (2014), Studies on growth morphology, UV absorbance and luminescence properties of sulphur doped ZnO nanopowders synthesized by the application of ultrasound with varying input power. Ultrason. Sonochem. 21: 582-589

[14]  Gu H., Hu Y., You J., Hu Z., Yuan Y., Zhang T., (2007), Characterization of single-crystalline PbTiO3 nanowire growth via surfactant-free hydrothermal method. J. Appl. Phys. 101: 024319-5.

[15]  Sun Y., He T., Guo H., Zhang T., Wang W., Dai Z., (2010), Structural and optical properties of the S-doped ZnO particles synthesized by hydrothermal method. Appl. Surf. Sci. 257: 1125-1128.

[16]  Patil A. B., Patil K. R., Pardeshi S. K., (2010), Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO. J. Hazard. Mater. 183: 315-323.

[17]  Madarasz J., Braileanu A., Pokol G., (2008), Comprehensive evolved gas analysis of amorphous precursors for S-doped titania by in situ TG–FTIR and TG/DTA–MS (Citations: 3). J. Anal. Appl. Pyrolysis. 82: 292-297.

[18]  Qin H., Li W., Xia Y., He T., (2011), Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO. Appl. Mater. Interf. 3: 3152-3156.

[19]  Kamalasanan M. N., Chandra S., (1996), Sol-gel synthesis of ZnO thin films. Thin Solid Films. 288: 112-115.

[20]  Nakamura I., Negishi N., Kutsuna S., Ihara T., Sugihara S., Takeuchi K., (2000), Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J. Mol. Catal. A: Chem.161: 205-212.