Synthesis and characterization of Nickel (II) Chloride nanoparticles with the study of their thermal behavior

Document Type: Reasearch Paper

Authors

1 Department of Chemistry, Takestan Branch, Islamic Azad University,Takestan , Iran.

2 Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.

10.7508/ijnd.2015.04.008

Abstract

In this research nanoparticles of Nickel (II) Chloride were synthesized and characterized using fourier transform infrared (FT-IR) spectra. Nanoparticles of Nickel (II) Chloride were prepared by using of ball mill device. A ball mill is one kind of grinding machine, and it is a device in which media balls and solid materials (the materials to be ground) are placed in a container. In the research Nickel (II) Chloride compound was milled for 10 h at 250 rpm in a hardened stainless steel medium. The resulting nanoparticles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The SEM imaging technique was applied for the observation of grain sizes and the morphology of the nanoparticles. The Debye-Scherrer formula was used to confirm the grain sizes determined by the SEM slides. XRD results of nanoparticles showed that the crystallite size of reaching 59 mm after 10 h at 250 RPM. Thermal behavior of nanoparticles was considered by using of DTA /TGA thermal analysis device. TGA analysis reveals that the synthesized Nickel (II) Chloride nanoparticle was thermally stable up to 900°C.

Keywords

Main Subjects


[1]      Rössler A., Georgios Skillas Sotiris E., Pratsinis S., (2001), Nanopartikel – Materialien der Zukunft: Maßgeschneiderte Werkstoffe. Chemie in unserer Zeit. 35: 32-41.

[2]      Stefan E., (2004), Chemische Technik. Prozesseund Produkte, 5.Aufl. Herausgegeben vonRoland Dittmeyer, Wilhelm Keim, GerhardKreysa und Alfred Oberholz. Angewandt Chemie. 116: 5687-5788.

[3]      Merisko-Liversidge E., Liversidge G. G., Cooper E. R., (2003), Nanosizing: A formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci. 18: 113–120.

[4]      Chen X., Young T. J., Sarkari M., Williams 3rd., R. O, Johnston K. P., (2002), Enhanceddrug dissolution using evaporation precipitation into aqueous solution. Int.J. Pharm. 242: 3–14.

[5]      Datta M. K., Pabi S. K., Murty B. S., (2000), Thermal stability of nanocrystalline Ni Silicides synthesized by mechanical alloying. Sci. Eng. A. 284: 219–225.

[6]      Kaupp G., Naimi-Jamal M. R., Ren H., Zoz H., (2003), In Advanced Technologies Based on Self-Propogating and Mechanochemical Reactions for Environmental Protection, Cao G., Delogu F., Orru R., Ed.; Research Signpost: Kerala. India. 4: 83-100.

[7]      Kaupp G., (2003), Solid-state molecular syntheses: complete reactions without auxiliaries based on the new solid-state mechanism. Cryst. Eng. Comm. 5: 117-133.

[8]      Naimi-Jamal M. R., Kaupp G., (2005), Quantitative evaluation of nanoindents: Do we need more reliable mechanical parameters for the characterization of materials. 96: 1226-1236.

[9]      Kaupp G., Schmeyers J., Naimi-Jamal M. R.,Zoz H., Ren H., (2002), Reactive milling with the Simoloyer R: Environmentally benign quantitative reactions without solvents and wastes. Chem. Engin. Sci. 57: 763-765.

[10]  Kaupp G., Naimi-Jamal M. R., Ren H., Zoz H., (2002), Environmentally Protecting Reactive Milling. Chemie Technik. 31: 206-208.

[11]  Krupp G. U., Mey K., Giertler A., Kaupp G., Benz H. U., Zoz H., (2012), Development of ultrafine-grained Zinc-ferrite-strengthened aluminum alloys by high-energy milling. Rev. Adv. Mater. Sci. 31: 19-24.

[12]  Kaupp G., (2011), Reactive milling with metals for environmentally benign sustainable production, Highlight. Cryst. Eng. Comm. 13: 3108-3121.

[13]  Kaupp G., (2009), Mechanochemistry: the varied applications of mechanical bond-breaking. Cryst. Eng. Comm. 11: 388-403.

[14]  Kaupp G., Naimi-Jamal M. R., Schmeyers J., (2003), Solvent-free Knoevenagel condensations and Michael additions in the solid state and in the melt with quantitative yield. Tetrahedron. 59: 3753-3760.

[15]  Kaupp G., Naimi-Jamal M. R., Stepanenko V., (2003), Waste-free Solid-state Protection of Diols, Diamines, Amino Acids and Polyols width Phenylboronic. Acid Chem. Eur. J. 9: 4156-4161.

[16]  Komatsu K., (2005), The Mechanochemical Solid-State Reaction of Fullerenes. Curr. Chem. 254: 185 – 206.

[17]  Zhang J., Gao J., Xia J., Wang G. W., (2005), Solvent-free mechanochemical and one-pot reductive benzylizations of malononitrile and 4-methylaniline using Hantzsch 1,4 dihydropyridine as the reductant. Org. Biomol. Chem. 3: 1617 – 1619.

[18]  Balema V. P., Wiench J. W., Pruski M., Pecharsky V. K., (2002), Mechanically Induced Solid-State Generation of Phosphorus Ylides and the Solvent-Free Wittig Reaction. J. Am. Chem. Soc. 124: 6244 – 6245.

[19]  Tullberg E., Schacher F., Peters D., Frejd T., (2006), Solvent-Free Heck-Jeffery Reactions under Ball-Milling Conditions Applied to the Synthesis of Unnatural Amino Acids Precursors and Indoles. Synthesis. 7: 1183-1189.

[20]  Tullberg E., Peters D., Frejd T., (2004), The Heck reaction under ball-milling conditions. J. Organomet. Chem. 689: 3778-3781.

[21]  Bang J. H., Suslick K. S., (2010), Applications of ultrasound to the synthesis of nanostructured. Mat. Adv. Mater. 22: 1039–1059.

[22] Darezereshki E., (2010), Synthesis of maghemite (α-Fe2O3) nanoparticles by wet chemical method at room temperature. Mater. Lett. 64: 1471–1472.