Biosynthesis of Silver nanoparticles using root extract of the medicinal plant Justicia adhatoda: Characterization, electrochemical behavior and applications

Document Type: Reasearch Paper

Authors

Nanoscience, PG & Research Department of Chemistry, V.O. Chidambaram College, Thoothukudi-628008, Tamil Nadu, India.

10.7508/ijnd.2015.04.002

Abstract

A facile and green approach has been developed to synthesize silver nanoparticle (Ag-NPs). This was carried out by a biosynthetic route using Justicia Adhatoda root extract as reducing and stabilizing agent. The structure, composition, average particle size (~25 nm) and surface morphology of Ag-NPs were characterized by the X-ray diffraction, transmission electron microscope and atomic force microscope analyses. The possible functional groups in the plant extracts were identified by FT-IR analysis. Electrochemical property of the Ag-NPs was analysed by cyclic voltammetry that displayed an oxidation peak potential at Epa = 0.438 V. Mechanism of the formation of Ag-NPs was proposed which showed that the phenolic compounds of the root extract respond for the reduction of silver ions to silver nanoparticles. Ag-NPs exhibit good antioxidant and antibacterial activities. This biosynthetic approach could open a path for environmentally friendly, simple, cost effective, alternate for conventional synthesis. This prevented hazardous chemicals and was useful for applications in medicine and large scale production of metallic nanoparticles.

Keywords

Main Subjects


[1]      Tolaymat T. M., Badawy A. M., Genaidy A., Scheckel K. G., Luxton T. P., Suidan M., (2010), An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers.  Sci. Total. Environ. 408: 999-1006.

[2]      Sousa F. L., Almeida A., Girao A. V., Fateixa S., Trindade T., (2014), Multiple emulsion templating of hybrid Ag/SiO2 capsules for antibacterial applications. Part. Part. Syst. Charact. DOI: 10.1002/ppsc.201400168.

[3]      Pinto R. J., Almeida A., Fernandes S. C., Freire C. S., Silverstre A. J., Neto C. P., Trindade T., (2013), Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids. Surf. B. Biointerfaces. 103: 143-148.

[4]      Abadeen S., Geo S., Sukanya, Praseetha P. K., Dhanya R. P., (2014), Biosynthesis of silver nanoparticles from Atinomycetes for therapeutic applications. Int. J. Nano Dimens. 5: 155-162.

[5]      Toraro P., Rambaldini M., (2009), Efficacy of antimicrobial activity of slow release silver nanoparticles dressing in post-cardiac surgery mediastinitis. Interact. Cardiovasc. Thorac. Surg. 8: 153-154.

[6]      Sadeghi B., Jamali M., Kia Sh., Amini nia A., Ghafari S., (2010), Synthesis and characterization of silver nanoparticles for antibacterial activity. Int. J. Nano Dimens. 1: 119-124.

[7]      Bae C. H., Nam S. H., Park S. M., (2002), Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution.  Appl. Surf. Sci. 197: 628-634.

[8]      Liu Y. C., Lin L. H., (2004), New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochem. Commun. 6: 1163-1168.

[9]      Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S. R., Khan M. I., Ramani R., Parischa R., Ajayakumar P. V., Alam M., Sastry M., Kumar R., (2001), Bioreduction of AuCl4- ions by the fungus, Verticillium sp. And surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. 40: 3585-3588.

[10]  Jagtap U. B., Bapat V. A., (2013), Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. Seed extract and its antibacterial activity. Ind. Crops. Prod. 46: 132-137.

[11]  Cruz D., Fale P. L., Mourato A., Vaz P. D., Serralheiro M. L., Lino A. R. L., (2010), Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids. Surf. B. Biointerfaces. 81: 67-73.

[12]  Vijayakumar M., Priya K., Nancy F. T., Noorlidah A., Ahmed A. B. A., (2013), Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica.  Ind. Crop. Prod. 41: 235-240.

[13]  Ahmad N., Sharma S., Alam M. K., Singh V. N., Shamsi S. F., Mehta B. R., Fatma A., (2010), Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. Colloids. Surf.  B. Biointerfaces. 81: 81–86.

[14]  Dinesh S., Karthikeyan S., Arumugam P., (2012), Biosynthesis of silver nanoparticles from Glycyrrhiza glabra root extracts. Archives of Appl. Sci. Res.  4: 178-187.

[15]  Suman T. Y., Radhika Rajasree S. R., Kanchana A., Elizabeth S. B., (2013), Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Collo. Surf. B. Biointerfaces. 106: 74-78.

[16]  Suresh G., Gunasekar P. H., Kokila D., Prabhu D., Dinesh D., Ravichandran N., Ramesh B., Koodalingam A., Siva G. V., (2014), Green synthesis of Silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochim. Acta. Part. A. Mol. Biomol. Spectrosc. 127: 61-66.

[17]  Monda N. K., Chowdhury A., Dey U., Mukhopadhya P., Chatterjee S., Das K., Datta J.K., (2014), Green synthesis of silver nanoparticles and its application for mosquito control. Asian. Pac. J. Trop. Dis. 4: S204-S210.

[18]  Naraginti S., Sivakumar A., (2014), Eco-friendly synthesis of Silver and Gold nanoparticles with enhanced bactericidal activity and study of Silver catalyzed reduction of 4-nitrophenol. Spectrochim. Acta. Part. A. Mol. Biomol. Spectrosc. 128: 357-362.

[19]  Yang N., Li W. H., (2013), Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Ind. Crop. Prod. 48: 81-88.

[20]  Sadeghi B., (2014), Green synthesis of silver nanoparticles using seed aqueous extract of Olea europaea. Int. J. Nano Dimens. 5: 575-581.

[21]  Gnanaprakasam P., Selvaraju T., (2014), Green synthesis of self assembled silver nanowire decorated reduced graphene oxide for efficient nitroarene reduction.  RSC Advances 4: 24518-24525.

[22]  Karthikeyan A., Shanthi V., Nagasathaya A., (2009), Preliminary Phytochemical and antibacterial screening of crude extract of the leaf of Adhatoda vasica (L). Int. J. Green. Pharm. 3: 78-80.

[23]  Nazeruddin G. M., Prasad N. R., Prasad S. R., Garadkar K. M., Nayak A. K., (2014), In-vitro bio-fabrication of silver nanoparticles using Adhathoda vasica leaf extract and its anti-microbial activity.  Physica E. 61: 56-61.

[24]  Rajan Rushender C., Madhavi eerike., Madhusudhanan N., Venu gopala rao konda., (2012), Invitro Antioxidant and free radical scavenging activity of Nymphaea pubescens.  J. Pharm. Res. 5: 3804-3806.

[25]  Mulvaney P., (1996), Surface plasmon spectroscopy of nanosized metal particles. Langmuir. 12: 788-800.

[26]  Park J., Kim Y., (2008), Effect of shape of silver nanoplates on the enhancement of surface plasmon resonance (SPR) signals. J. Nanosci. Nanotechnol. 8: 5026-5029.

[27]  Das J., Paul Das M., Velusamy P., (2013), Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim. Acta. Part. A. Mol. Biomol. Spectrosc. 104: 265–270.

[28]  Dipankar C., Murugan S., (2012), The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf. B. Biointerfaces. 98: 112–119

[29]  Gopinath K., Gowri S., Arumugam A., (2013), Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacteiral properties. J. Nanostruct. Chem. 3: 1-7.

[30]  Vivekanandhan S., Scheriber M., Mason C., Mohanty A. K., Misra M., (2014), Maple leaf (Acer sp.) extract mediated green process for the functionalization of ZnO powders with silver nanoparticles. Colloid Surf. B. Biointerfaces. 113: 169-175.

[31]  Das S., Das J., Samadder S., Bhattacharyya S. S., Das D., Khuda-Bukhsh A. R., (2013), Biosynthesized silver nanoparticles by ethanolic extracts of Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis induce differential cytotoxicity through G2/M arrest in A375 cells. Colloids Surf. B. Biointerfaces. 101: 325-336

[32]  Jebakumar Immanuel Edison T., Sethuraman M. G., (2012), Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 47: 1351-1357.

[33]  Kalimuthu K., Babu S. R., Venkataraman D., Bilal M., Gurunathan S., (2008), Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B. Biointerfaces.  65: 150–153.

[34]  Ahmad S., Garg M., Ali M., Singh M., Athar Md. T., Ansari S. H., (2009), A phyto-pharmacological overview on Adhatoda zeylanica Medic. syn. A. vasica (Linn.) Nees. Natural Product Radiance. 8: 549-554.

[35]  Devi L. B., Mandal A. B., (2013), Self-assembly of Ag nanoparticles using hydroxypropyl cyclodextrin: synthesis, characterisation and application for the catalytic reduction of p-nitrophenol. RSC Adv. 3: 5238-5253.

[36]  Maurya S., Singh D., (2010), Quantitative analysis of total phenolic content in Adhatoda vasica Nees extracts. Int. J. Pharm. Tech. Research. 2: 2403-2406.

[37]  Ranjitham A. M., Suja R., Caroling G., Tiwari S., (2013), Invitro evaluation of antioxidant, antimicrobial anticancer activities and characterisation of Brassica oleracea. Var. Bortrytis, L synthesized silver nanoparticles. Int. J. Pharm. Pharmaceutical Sciences. 5: 239-251.

[38]  Panchawat S., Sisodia S. S., (2010), In Vitro Antioxidant activity of Saraca Asoca Roxb. De Wilde Stem Bark Extracts from Various Extraction Processes. Asian J. Pharm. Clin. Res. 3: 231-233.

[39]  Sondi I., Salopek-Sondi B., (2004), Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid. Interface Sci. 275: 177–182.

[40]  Juan L., Zhimin Z., Anchun M., Lei L., Jingchao Z., (2010), Deposition of silver nanoparticles on titanium surface for antibacterial effect. Int. J. Nanomed. 5: 261–267.