Scanning hall probe microscopy technique for investigation of magnetic properties

Document Type: Review


1 Catalysis and nanotechnology research division, research institute of petroleum industry, P. O. Box: 1485733111, Tehran, Iran.

2 Science and Chemical technology research division, research institute of petroleum industry, P. O. Box: 1485733111, Tehran, Iran.



Scanning Hall Probe Microscopy (SHPM) is a scanning probe microscopy technique developed to observe and image magnetic fields locally. This method is based on application of the Hall Effect, supplied by a micro hall probe attached to the end of cantilever as a sensor.  SHPM provides direct quantitative information on the magnetic state of a material and can also image magnetic induction under applied fields up to ~1 tesla. This method is non-invasive with high spatial resolution and sensitivity. Furthermore, this microscopy technique can be operated in a wide range of temperatures while the magnetic field caused by hall probe is so minimal, which has negligible effect on the measuring process. Meanwhile, the sample does not need to be an electrical conductor, unless using Scanning Tunneling Microscope (STM) for height control. SHPM measurements can be performed in ultra-high vacuum (UHV) and are non-destructive for crystal lattice and complicated structures.


Main Subjects

[1]      Dede M., (2002), Investigation of the magnetic properties of BSCCO superconductors with scanning Hall probe. Thesis.

[2]      Bjornsson P. G., (2005), Low temperature scanning magnetic probe microscopy of exotic superconductors. Thesis.

[3]      Sadegh Hassani S., Aghabozorg H. R., (2011), Recent advances in nanofabrication techniques and applications, chapter title: Nanolithography study using scanning probe microscope.

[4]      Chang A. M., Harriott H. D., Hess H. F., Kao H. L., Kwo J., Miller R. E., Wolfe R. & van der Ziel J., (1992), Scanning Hall probe microscopy. Appl. Phys. Lett. 61: 1974-1976.

[5]      Oral A., Bending S. J., Henini M., (1996), Real time scanning hall probe microscopy. Appl. Phys. Lett. 69: 1324-1326.

[6]      Fedor J., (2004), New approaches in scanning probe microscopy for magnetic field imaging. Thesis.


[8]      Kirtley J., (2010), Fundamental studies of superconductors using scanning magnetic imaging. Rep. Prog. Phys. 73, 126501-126535.

[9]      Kweon S., (2008), Study of a ferromagnetic semiconductor by the Scanning Hall Probe Microscope. Thesis.

[10]  Brawner D. A., Ong N. P., Wang Z. Z., (1992), Novel field induced asymmetry in the remanent magnetization of the superconductor YBa2Cu3O7. Nature 358: 567-569.

[11]  Geim A. K., Dubonos S. V., Grigorieva I. V., Novoselov K. S., Peeters F. M., Schweigert V. A., (2000), Non-quantized penetration of magnetic field in the vortex state of superconductors. Nature 407: 55-57.

[12]  Fukumura T., Sugawara H., Hasegawa T., Tanaka K., Sakaki H., Kimura T., Tokura Y., (1999),  Spontaneous bubble domain formation in a layered ferromagnetic crystal. Science 284: 1969-1971.

[13]  Solin S. A., Stradling R. A., Thio T., Bennet J. W., (1997), Thin horizontal plane Hallsensors for read heads in magnetic recording. Measur. Sci. Technol. 8: 1174-1181.

[14]  Monzon F. G., Johnson M., Roukes M. L., (1997), Strong Hall voltage modulation in hybrid ferromagnet/semiconductor microstructures. Appl. Phys. Lett. 71: 3087-3089.

[15]  Sandhu A., masuda Oral A., Bending S. J., Yamada A., Konagai M., (2002), Room temperature scanning Hall probe microscopy using GaAs/AlGaAs and Bi micro-hall probes. Ultramicroscopy. 91: 97-101.

[16]  Johnson M., Bennett B. R., Yang M. J., Miller M. M., Shanabrook B. V., (1997), Hybrid Hall effect device. Appl. Phys. Lett. 71: 974-976.

[17]  Boero G., Besse P.-A., Popovic R. S., (2001),  Hall detection of magnetic resonance. Appl. Phys. Lett. 79: 1498-1500.

[18]  Cassinese  A., Getta M., Hein M., Kaiser T., Kurschner H. G., Lehndorff  B., Muller G., Pie H., Skriba B., (1999), Scanning hall probe measurements on single and double sided sputtered YBCO films for microwave application. IEEE Transact. Appl. Superconduc. 9: 1960-1963.

[19]  Oral A., Bending S. J., Humphreys R. G., Henini M., (1997), Microscopic measurement of penetration depth in YBa2Cu3O7 mucroscopic measurement of penetration depth i. Supercond. Sci. Technol.10: 17–20.

[20]  Khotkevych V. V., Miloševic´ M. V., Bending, S. J., (2008), A scanning Hall probe microscope for high resolution magnetic imaging down to 300 mK. Rev. Sci. Instrum. 79: 123708.

[21]  Oraly A., Bendingand S. J., Humphreysz R.G., Henini M., (1997), Microscopic measurement of penetration depth in YBa2Cu3O7 mucroscopic measurement of penetration depth in Supercond. Sci. Technol. 10: 17–20.

[22]  Kustov M., Laczkowski P., Hykel D., Hasselbach K., Dumas-Bouchiat F., O’Brien D., Kauffmann P., Grechishkin R., Givord D., Reyne G., Cugat O., Dempsey N. M., (2010), Magnetic characterization of micropatterned Nd–Fe–B hard magnetic films using scanning Hall probe microscopy. J. Appl. Phys. 108: 063914-15.

[23]  Walsh V., Cowey A., (2000), Transcranial magnetic stimulation and cognitive neuroscience. Nature Rev. Neurosci. 1: 73–79.

[24]  Loo C. K., Mitchell P. B., (2005), A review of the efficacy of transcranial magnetic stimulation (TMS) treatment for depression, and current and future strategies to optimize efficacy. J. Affect. Disord. 88: 255–267.

[25]  George M. S., Wassermann E. M., Kimbrell T. A, Little J. T., Williams W. E., Danielson A. L., Greenberg B. D., Hallett M., Post R. M., (1997),  Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: a placebo controlled crossover trial. Am. J. Psychiat. 154: 1752–1756.

[26]  Massot O., Grimaldi B., Bailly J. M., Kochanek M., Deschamps F., Lambrozo J., Fillion G., (2000), Magnetic field desensitizes 5-HT1B receptor in brain: Pharmacological and functional studies. Brain Res. 858: 143–150.

[27]  Espinosa J. M., Liberti  M., Lagroye I., Veyret  B., (2006),  Exposure to AC and DC magnetic fields induces changes in 5-HT1Breceptor binding parameters in rat brain membranes. Bioelectromagnetics  27: 414–422.

[28]  Murat K., Yapici A. E., Ozmetin J. Z., Donald G. N., (2008), Development and experimental characterization of micromachined electromagnetic probes for biological manipulation and stimulation applications. Sens.  Act.  A. 144: 213–221.

[29] Boero G., Demierre M., Besse P. A., Popovic R. S., (2003), Micro-Hall device: performance, technologies and applications. Sens.  Act.  A.: Physical 106: 314-320.