Fabrication and nano structural study on La$_2$O$_3$-Co$_3$O$_4$-ZrO$_2$ composite

ABSTRACT

We report on the synthesis, morphology, chemically and structurally of La$_2$O$_3$-Co$_3$O$_4$-ZrO$_2$ nanostructure. The La$_2$O$_3$-Co$_3$O$_4$-ZrO$_2$ nanostructure was synthesized by a method based on the co-precipitation. Composite powders have been characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy) and BET (Brunauer-Emmett-Teller). X-ray diffraction showed the formation of nano crystalline, La$_2$Zr$_2$O$_7$, ZrO$_2$, La(OH)$_3$ and Co$_3$O$_4$ phases. Scanning electron microscopy revealed that nanostructure formed by increasing the calcinations temperatures. With BET and BJH (Barrett, Joyner and Halenda) method the pore size distribution was determined. The effects of chemical compositions and calcinations temperature on the surface topography and the crystallization of phases were studied. The lattice strain of nanocrystallite during thermal treatment was calculated.

Keywords: Fabrication; Nanostructure; La$_2$O$_3$-Co$_3$O$_4$-ZrO$_2$; Composite; Co-precipitation.

INTRODUCTION

Mixed metal oxides comprise the vast majority of catalysts used in modern chemical industry. Among the mixed metal oxides, Cobalt oxide (Co$_3$O$_4$) powder has a wide range of applications in various fields of industry including anode materials for rechargeable Li-ion battery, catalyst, gas sensor and magnetic materials [1–4].

The properties of Co$_3$O$_4$ in above applications are highly related to the particle size. It has been indicated that nanocrystalline Co$_3$O$_4$ is especially good for the property promotion [5]. Much effort has been made to prepare Co$_3$O$_4$ nanoparticles, including pulsed laser deposition [6], sol–gel route [7], reduction–oxidation route [8], gel hydrothermal oxidation [5], homogeneous precipitation [9], staged oxidation process [10] and cobalt salt decomposition [11,12], but through all of the above methods, nanocrystalline Co$_3$O$_4$ is more difficult and inconvenient to obtain.
In general, the potential commercial cobalt catalysts are typically composed of four components: Co metal, a small amount of a second metal, oxide promoters (alkali, rare earth, and/or transition metal oxide such as ZrO$_2$) and supports (Silica, Alumina or Titania) [13,14]. Modification of Zirconia by a second metal, therefore, could improve its properties as a catalyst support. Previous studies have shown that the catalytic activities of Co catalysts in CO hydrogenation were improved by the use of ZrO$_2$ mixed oxides such as Al$_2$O$_3$–ZrO$_2$ [15] and SiO$_2$–ZrO$_2$ [16]. Lanthanum, one of interesting rare earth promoters for cobalt catalyst, was reported to be beneficial for CO hydrogenation to produce long chain hydrocarbons and it showed a significant enhancement of catalytic activity owing to increase of active site dispersion [17,18]. Solid-state reaction of La and Co oxides at high temperature results in the formation of large particle size and limited degree of chemical homogeneity. Fine and homogeneous particles with high specific surface area are formed during a chemical solution process, such as citrate method, using different starting precursors, usually nitrate and an organic additive such as citric acid [19].

In this study, La$_2$O$_3$–Co$_3$O$_4$–ZrO$_2$ nanocomposite was prepared by Co-precipitation method. The morphologies and the crystalline structures of the La$_2$O$_3$–Co$_3$O$_4$–ZrO$_2$ are characterized using FE-SEM, AFM, TEM, XRD, and BET. We have suggested the optimum experimental conditions for the various composite particle syntheses.

EXPERIMENTAL

The composition of the starting solution and the experimental conditions used for ternary powders are listed in Table 1. The La$_2$O$_3$–Co$_3$O$_4$–ZrO$_2$ was prepared separately by mixing precursors: (Co(NO$_3$)$_2$·6H$_2$O (Merck ≥ 99%), Water, HNO$_3$), (ZrOCl$_2$ (Merek ≥ 99%), water, acetic acid (Fluka, 60%), ethanol (Merck ≥ 99%), (La(NO$_3$)$_3$ (Fulka ≥ 99%), water, HNO$_3$) at room temperature and then these solutions were combined with together and after 72 h, gelation was formed. This gel also was dried for 12 h at 80°C and then was washed thoroughly with distilled water to eliminate the chloride ions. This powder calcined at 600 and 800°C.

Table 1. Composition of starting solutions and experimental conditions for ternary powder preparation

<table>
<thead>
<tr>
<th>Co-precipitation method</th>
<th>Precursor and Molar ratio(MR)</th>
<th>Stirring Time(h)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co(NO$_3$)$_2$·6H$_2$O / ZrOCl$_2$ / La(NO$_3$)$_3$</td>
<td>1</td>
<td>72</td>
<td>8</td>
</tr>
</tbody>
</table>

Characterization of the La$_2$O$_3$–Co$_3$O$_4$–ZrO$_2$

XRD patterns measured on a (GBC-MMA 007 (2000)) X-ray diffractometer. The diffractograms recorded with (Kα(Cu), 1.54056Å, 0.02° step size in which the speed 10°(min) radiation over a 20 range of 10–70°. The N$_2$ adsorption–desorption isotherms are obtained by on a Sorptometer Kelvin 1042 at 77 °K, from which the surface area (S$_{BET}$), the pore volume (V$_p$) and the pore diameter (d$_p$) are calculated by BET and BJH methods, respectively.

RESULTS AND DISCUSSION

Crystallographic phases of the composite were investigated by XRD method. Figure 1 and assignments of the XRD peaks are summarized in Table 2, respectively. Due to different hydrothermal treatment crystalline phases are formed. Figure 1 shows the XRD patterns of powder obtained from gels after drying and calcination at 600 °C and 800 °C with 10 $^\circ\text{C}/\text{min}$ gradient and stayed in 2 hours, after then, they cooled in similar temperature gradient. Figure 1 shows the amorphous structure for as-prepared sample due to the short range ordering of the network [20]. Samples obtained from 600 °C and 800 °C have a high degree of the crystallinity. The grain size values were calculated from Scherrer equation:

$$d = \frac{0.9\lambda}{2B\cos\theta}$$ \hspace{1cm} (1)

Where $\lambda = 0.154$ nm, and θ is the reflection angle.

As shown in Figures 1, there is only Co$_3$O$_4$ phase (peak at 20= 37.1°). The size of grains
increases with increasing the calcination temperature corresponds to Table 2.

Lattice strains of nanocrystallites are determined from the dependence of FWHM of diffraction lines observed in 2θ range of 10-80° on sinθ, according to the Williamson-Hall's equation [21]:

\[\beta \cos \theta = \frac{k \lambda}{L} + 4 \sin \theta, \quad (2) \]

Where β was FWHM observed, shape factor k was assumed to be 0.9 similar to Scherrer equation's. λ (wavelength of \(K_{\alpha} \) (Cu). The plots of βcosθ against 4sinθ for different samples were approximated to be linear. Lattice strain was determined from the slope of this linear relation. Because of lowly-crystallized powder samples, the linearity between βcosθ and 4sinθ is not very evident [22]. The plots of βcosθ against 4sinθ for different diffraction lines are illustrated in Figure 2.

For low calcined temperatures, the experimental points for the diffraction lines measured scattered, because the peaks are weak and broad so that their FWHMs were difficult to be measured. As can be seen in Figure 2, the lattice strain increases from 0.2597 (of 600°C) to 0.4179 (of 800°C) calcinations temperature.

Fig. 1. XRD patterns of \(\text{La}_2\text{O}_3\)-\(\text{Co}_3\text{O}_4\)-\(\text{ZrO}_2 \) (a) without calcination temperature (as-prepared), (b) calcined at 600 °C and (c) calcined at 800 °C.
Table 2. The 2θ angle, d-space, Miller indexes, grain size and lattice strain of La₂O₃-Co₃O₄-ZrO₂.

<table>
<thead>
<tr>
<th>Crystalline Phase</th>
<th>As-prepared</th>
<th>Calcined at 600 °C</th>
<th>Calcined at 800 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2θ</td>
<td>d-space(Å)</td>
<td>size(nm)</td>
</tr>
<tr>
<td>La₂Zr₂O₇</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cubic</td>
<td>a=10.823 Å</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZrO₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cubic</td>
<td>a=5.1030 Å</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La(OH)₃</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexagonal</td>
<td>a=6.5286 Å</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c=3.859 Å</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co₃O₄</td>
<td></td>
<td>37.10</td>
<td>2.41</td>
</tr>
</tbody>
</table>

Fig. 2. The relation between βcosθ and 4sinθ (Williamson-Hall plots) with different calcination temperatures.

SEM images of La₂O₃-Co₃O₄-ZrO₂ nanopowders are shown as Figure 3(a-c). In Figure 3(a), as-prepared powder sample has irregular surface. As shown in Figure 3, SEM images of powders with different calcination temperatures are presented. Nanoparticles have more congestion and density with increasing the calcination temperature also, with increasing the calcination temperature, nanoparticles become tetragonal-shape. It is obvious that larger particle size is achieved by increasing the calcinations process and this is in good consistence with the Scherrer's equation in the XRD evaluation.

Fig. 3. SEM images of powder samples for MR=0.5 (a) as-prepared, (b) 300 °C, (c) 600 °C, (d) 800 °C.
Additional characteristic parameters of the sample with 800 °C calcination temperature (such as BET surface area, mean pore diameters) are calculated by BET and BJH methods. According to the BET method data particles have a specific surface area of 12.039 m²/g and the mean pore diameter of 24.262 nm and total pore volume 0.07302 cm³/g. We can notice from BJH method (Figure 4(a-c)) that the pore size distribution (peak) is 5.29 nm.

CONCLUSIONS

Experimental results indicate that the homogeneous synthesis of La₂O₃-Co₃O₄-ZrO₂ composite via co-precipitation route is a promising technique for preparing material with uniform nanoparticles. In this study, nanocrystalline La₂O₃-Co₃O₄-ZrO₂ particles have been successfully synthesized by chemical method and heat treatment process. The effect of La₂O₃-Co₃O₄-ZrO₂ composite on the structural properties of powders by co-precipitation technique has been examined. The XRD spectra show La₂Zr₂O₇, ZrO₂, La(OH)₃ and Co₃O₄ phases and grains size. The size of grains increase with increasing the calcination temperature corresponds to Table 2. Scanning electron microscopy measurements show nanostructure and morphology of powders. With increasing the calcination temperature, nanoparticles become tetragonal-shape and larger particle size is achieved by increasing the calcination temperature. It has been shown that with increasing the calcination temperature lattice strain increases from 0.2597 (of 600 °C) to 0.4179 (of 800 °C) calcination temperatures.

REFERENCES

