Interaction of some heavy metal ions with single walled carbon nanotube

O. Moradi¹*, K. Zare²⁴, M. Yari⁴

¹Department of chemistry, Shahre-Ghods branch, Islamic azad university, Tehran, Iran
²Department of chemistry, Science and research branch, Islamic azad university, Tehran, Iran
³Department of chemistry, Shahid beheshti university, Evin, Tehran, Iran
⁴Faculty of chemistry, Islamshahr branch, Islamic azad university, Islamshahr, Iran

Received: 12 December 2010; Accepted: 2 February 2011

Abstract

The interaction between some heavy metal ions such as of Pb(II), Cd(II) and Cu(II) ions from aqueous solution adsorbed by single walled carbon nanotube (SWCNTs) and carboxylate group functionalized single walled carbon nanotube (SWCNT-COOH) surfaces were studied by atomic absorption spectroscopy. The effect of contact time, pH, initial concentration of ion, ionic strength and temperature on the adsorption of ion were investigated. The results indicated that Langmuir model fits adsorption isotherm data better than the Freundlich model. The results also demonstrated that SWCNT-COOH surfaces can more effectively adsorb mentioned ions than a SWCNTs surface. Maximum adsorption capacities (qₘ) for Pb(II), Cu(II) and Cd(II) ions onto SWCNT-COOH were obtained as 96.02, 77.00 and 55.89 mg/g, respectively and by SWCNTs, as 33.55, 24.29 and 24.07 mg/g, respectively. Thermodynamic parameters values showed that the adsorption of ions on SWCNT-COOH and SWCNTs at 283-313 K is spontaneous and endothermic.

Keywords: Heavy metal ions, Adsorption, Single walled carbon nanotube, Isotherm models, Thermodynamic functions

1. Introduction

Aquatic pollution by heavy metals is a rising concern at hazardous waste around the world. Several heavy metal ions such as Pb(II), Cu(II) and Cd(II) etc. have been included in the U.S. Environmental Protection Agency’s list of priority pollutants [1].

* Corresponding author: Omid Moradi
Department of Chemistry, Shahre-Ghods Branch, Islamic Azad University, Tehran, Iran
Tel & Fax + 982146842938
Email O.moradi@shahryaiu.ac.ir
These heavy metal ions are introduced into natural water resources by wastewater discharged from the industries such as smelting, metal plating, phosphate fertilizer, mining, galvanizing, paints, pigments, cosmetics and alloy manufacturing [2]. Pb(II) is a highly toxic substance, exposure to which can produce a wide range of adverse health effects on both adults and children [3]. The major Cd(II) sources come from industrial processes such as electroplating, smelting, alloy manufacturing, pigments and solar battery production [4]. The industries such as brass manufacture, electroplating and petroleum refining produce wastewater and sludge containing Cu(II) ions, which have negative effects on water resources. Cu(II) may also be found as a contaminant in food, especially shellfish, liver, mushrooms and nuts [5-6].

The World Health Organization has recommended the maximum acceptable concentration of Pb(II), Cd(II) and Cu(II) in drinking water as 0.010, 0.003 and 1.500 mg/L, respectively [7-8]. Removal of heavy metals from waters and wastewaters is important in terms of protection public health and environment due to their accumulation in the living tissues throughout the food chain as non-biodegradable pollutants [9]. Several methods have been applied over the years for the elimination of metal ion in industrial wastewater. The traditional methods commonly used for the removal of heavy metal ions from aqueous solution such as ion-exchange, solvent extraction, chemical precipitation, phytoextraction, ultrafiltration, reverse osmosis, electrodialysis and adsorption [10-12]. Carbon nanotubes (CNTs) have come under intense multidisciplinary study, because of their unique physical and chemical properties [13]. They have been used as an adsorbent for hydrogen and other gases due to their highly porous and hollow structure, large specific surface area, light mass density and strong interaction between carbon and hydrogen molecules [14]. Also, CNTs are very hydrophobic and tend to aggregate in aqueous solution because of high van der waals interaction forces along the tube outside. As a result, they are not readily dispersible in water [15]. However, their dispersibility in aqueous solutions can be increased by functionalization such as surface oxidation or by addition of surfactant [16-17]. These nonmaterial have been proven to possess great potential as superior adsorbents for removing many kinds of organic and inorganic pollutants such as fulvic acid [18], oxalic acid [19], pentachlorophenol [20], 2,4,6-trichlorophenol [21], o-xylene and p-xylene [22], polycyclic aromatic hydrocarbons [23] and heavy metal ions such as U(VI) [24], Cr(VI) [25], Zn(II) [26], Ni(II) [27], Sr(II) [27], Pt(II) [28], Cu(II) [29], Pb(II) [30-31] and Cd(II) [26, 32] from aqueous solution. The large adsorption capacity of CNTs is mainly attributable to their pore structure, surface area and existence of a wide spectrum of surface functional groups. Modification of CNTs with specific physicochemical properties, e.g. optimal performance for particular purposes can be achieved by chemical or thermal treatments [33]. Therefore, a test on the modification method of CNTs is needed for employing the most efficient CNTs in order to meet the growing demand for cleaner air and water. Chemical oxidations have produced activated carbons with weakly acidic functional groups [33], which can provide numerous chemical adsorption sites and consequently enhance the affinity for metal ions as compared to the parent carbons [34].

The main purpose of the present work is to compare adsorption of Pb(II), Cd(II) and Cu(II) ions onto SWCNTs and SWCNT-COOH surfaces from aqueous solution. This study provides an insight into Pb(II), Cd(II) and Cu(II) ions adsorption from aqueous solution in terms of equilibrium, isotherm and thermodynamic parameters. It also provides the optimum adsorption conditions in terms of various system parameters as initial concentration, ionic strength, contact time, pH, temperature and adsorbent type. Also ion desorption studies were carried out using dilute HNO₃ and HCl.
2. Materials and methods

2.1. Materials

Cu(NO₃)₂·3H₂O (molecular weight, 241.60 g/mol), Cd(NO₃)₂·4H₂O (molecular weight, 308.48 g/mol) and Pb(NO₃)₂ (molecular weight, 331.20 g/mol) were supplied by Merck, Germany (maximum purity available). All solutions were prepared with deviations of less than ±0.1% from the desired concentrations. SWCNTs (purity, > 95%; diameter 1-2 nm; length, 5-30 nm; surface area, ~ 400 m²/g; and manufacturing method, catalytic chemical vapor deposition (CVD)) and SWCNT-COOH (content of COOH, 1-6 wt%; with purity > 95%; average diameter 1-2 nm; length 5-30 nm and SSA ~400 m²/g) were purchased from NanoAmor Nanostructured & Amorphous Materials, Inc, USA. Doubly distilled water was used and all adsorbents were washed before using.

2.2. Analytical measurement

Analytical grade lead, cadmium and copper nitrate were used to prepare three stock solutions, the first containing 1000 mg/L of Pb(NO₃)₂, the second containing 1000 mg/L of Cd(NO₃)₂·4H₂O and third containing 1000 mg/L of Cu(NO₃)₂·3H₂O which were further diluted with fresh doubly distilled deionized water to the required ions concentration. Adsorption thermodynamic experiments were conducted using 100 mL glass flask containing 50 mg of the adsorbents, SWCNT-COOH and SWCNTs surfaces, and 10 mL of the mentioned ion solutions with the initial concentration (C₀) ranging from 10 to 50 mg/L at pH=5. The glass flask was sealed with glass stopper. The samples were then mounted on a shaker (HZQ-C) and shaken continuously at 250 rpm for different periods of time and at various temperatures (283, 293, 303 and 313K). After certain time, the suspensions were filtered using a 0.22μm membrane. Then the filtrates were immediately examined using atomic absorption spectrophotometry (AAS) (Perkin-Elmer AAnalyst 700) in order to measure the ions concentration. The difference between the initial and the equilibrium ion concentration determines the amount of ion adsorbed onto SWCNT-COOH and SWCNTs surfaces. All the experiments were performed in triplicate and only the mean values are reported. As shown previously, the adsorption of ion on the bottle wall is ignorable [32, 34]. The background electrolyte concentration was adjusted at 0.01-0.05 M by adding NaNO₃ (prepared by Merck Company and maximum purity was used).

2.3. Batch mode adsorption studies

The effect of experimental parameters, such as the nature of metal ions, initial concentration (10-50 mg/L), pH (2-8) and temperature (283, 293, 303 and 303 K) on the extend of adsorption various ion were studied in a batch mode of operation for the specific period of contact times (0-180 min). In order to determine the effect of each parameter, the other parameters were fixed. Each of the Pb(II), Cd(II) and Cu(II) ion solution was prepared by dissolving Pb(NO₃)₂, Cd(NO₃)₂·4H₂O and Cu(NO₃)₂·3H₂O in doubly distilled water respectively and used as stock solutions. Then they were diluted to the required concentration. The pH of solution was adjusted using 0.1 M HCl or 0.1 M NaOH (provided by Merck Company with maximum purity). For contact time studies, 10 mL of each ion solution of known initial concentration and certain pH were taken into a 25 mL screw-cap flask with a fixed quantity of adsorbent (50 mg/L) and agitated in a thermostated rotary shaker min with the speed of 250 rpm at 293K. At various intervals, the adsorbents were separated from the samples by filtering and the filtrates were analyzed using AAS and the concentration of each ion was determined as previously. Quality assurance of the analytical measurements was performed. Pb(II), Cd(II) and Cu(II) standard solutions of 1000mg/L ±0.1%
were used for measurement. Calibration curves between 1 and 50mg/L were prepared and the detection limit was found to be 1mg/L. Precision of the parallel measurements was ±1% SD. For adjusting each adsorption isotherm, different initial concentrations (10–50mg/L) of each Pb(II), Cd(II) and Cu(II) ion were agitated with 50 mg/L adsorbent dosage in a thermostated shaker (250rpm) for several times. The adsorbents were removed by membrane. The adsorption percentage of each metal ion was calculated as follows:

\[
\text{Adsorption (\%)} = \frac{C_i - C_f}{C_i} \times 100
\]

Where, \(C_i\) and \(C_f\) are the initial and final metal ion concentration (after contact to adsorbents), respectively.

3. Results and discussion

3.1. Effect of contact time and initial concentration on ion adsorption

SWCNT-COOH and SWCNTs surfaces were treated by each of Pb(II), Cd(II) and Cu(II) ion individual solution (20 mg/L; pH=5 and T=293±1K) in order to optimize contact time respect to each ion. The amount of each adsorbed ion on the adsorbents was analyzed using AAS. Figure 1 shows the percentage of adsorbed ion onto SWCNT-COOH and SWCNTs surfaces, as a function of contact time. It can be seen that the amount of the each ion adsorbed onto SWCNT-COOH is more than that onto SWCNTs.

![Figure 1](image)

Fig.1. Effect of contact time on the percentage of ion adsorption onto SWCNT-COOH and SWCNTs surfaces, initial concentration, 20 mg/L; pH 5; adsorbent dosage, 50 mg/L; contact time, 120 min and T=293±1K.
The adsorption affinity order of three ions onto both SWCNT-COOH and SWCNTs surfaces are as \(Pb(II) > Cu(II) > Cd(II) \) under the experimental conditions. It is due to the higher charge surface of Pb(II) ion than Cu(II) and Cd(II) ions. The charge density is described by as follow [35]:

\[
d_c = \frac{3Q}{4\pi r^3} \tag{2}
\]

Where, \(d_c \) is the charge density of cation, \(Q \) and \(r \) represent the charge of cation expressed in coulombs and the radius of the cation, respectively (hydrate cation radius of Pb(II), Cu(II) and Cd(II) ions is 0.401, 0.419 and 0.423 nm, respectively [36]). Since the cations were of the same valance (+2) in our study, the order of charge density was determined by the cation size. It has been well established that water is attracted to the positively charged cations due to its dipolar nature and the attracted water molecules create a shell around the cation where the hydrated cation forms. Thus the charge density for Pb(II) is more than Cu(II) and Cd(II) ions, leading to increase in the percentage of ion adsorption onto both adsorbent surfaces. Another reason for higher adsorption of ions onto SWCNT-COOH is the existence of functional group (-COOH) on this adsorbent. This functional group causes a rise in the negative charge on the carbon surface. The oxygen atoms in the functional groups donate single pair of electron to metal ions and consequently increase their cation exchange capacity [37]. It can be also that carboxylic group on SWCNT-COOH can form a complex with the metal ion, leading to increase in the amount of ions adsorption [38, 39]. Compared with other commercially available adsorbent, such as activated carbon and SWCNTs, SWCNT-COOH surface showed better adsorption properties including short equilibrium time, large adsorption capacity and easy regeneration [40]. Numerous investigations have also demonstrated that the zeta potential of SWCNT-COOH is more negative than that of SWCNTs [41-43]. Also the charge surface for SWCNT-COOH is negative and that SWCNTs have a charge surface of about zero at the pH of the experiments [39]. The negative charge surface of SWCNT-COOH electrostatically favors the adsorption of ions more than in SWCNTs. The adsorption of ions increases with the increasing of contact time. The amount of equilibrium adsorption is strongly dependent on the initial ion concentration. When the initial concentration of Pb(II) ion was 20 mg/L, the adsorption onto SWCNT-COOH surface mainly occurs read within 80 min. But for the other ions, the equilibrium time was 100-120 min. Therefore, 120 min was selected as the equilibrium time for both adsorbents in all experiments. From 120 to 180 mins, the concentration of three ions of (Pb(II), Cd(II) and Cu(II)) remained unchanged with time. Figure 2 shows the amount of adsorbed ions as a function of the initial concentration of each ion from aqueous solutions. At this part of experiment, the following concentrations were chosen for each ion: 10, 20, 30, 40 and 50 mg/L at pH=5, equilibrium time, 120 min and \(T=293\pm1K \). With the increase of ion concentration, the percentage of ion adsorption increased.
Also more metal ions were left unadsorbed in the solution due to saturation of the binding sites. This indicates that energetically less favorable sites became involved with the increasing of ion concentration in the aqueous solution [41].

Metal ion adsorption is attributed to different mechanism of ion exchange as well as to the adsorption. This effect on ion adsorption can be explained, as at low metal ion/adsorbent ratios, metal ion adsorption involves more energy sites. As metal ion/adsorbent ratio increases, more energy sites are saturated and adsorption begins on fewer energy sites, resulting in low increasing of metal ion adsorption [41]. About 78.83% of Pb(II) was adsorbed onto SWCNT-COOH surface after 120 min for the initial Pb(II) concentration was 5.0 mg/L. Also about 65.21% and 50.31% of Cu(II) and Cd(II) ions were adsorbed under the same conditions (time and concentration), respectively. Similar results have been obtained by several earlier works on ion adsorption onto CNTs [39, 42].

3.2. Effect of pH on ion adsorption

The pH of solution is an important variable governing metal ions adsorption. The effect of pH on the adsorption percentage of Pb(II), Cd(II) and Cu(II) ions onto SWCNT-COOH and SWCNTs surfaces were studied by varying the solution pH over the range of 2–8 using the same concentrations of ions. In this study, sodium phosphate (0.1 mol/L), ammonium acetate (0.1 mol/L) and ammonium chloride (0.1 mol/L) were used for the adjustment of solutions pH. After the solubility product equilibrium constant (Ksp), of the ions, the best pH range is 2–8 for these ions [44]. Figure 3 illustrates that for each ion, the percentage of adsorption is increased efficiently with the increase of solution pH. The initial concentration of each ion was 20 mg/L and T=293 K.
The uptake of each ion by the adsorbents in aqueous solution increased as the pH increased from 2 to 8. Although a maximum uptake was noted at pH 8, but as the pH increased to >7, the metal ion started to precipitate. Therefore, no experiment was conducted at pH≥7. The increasing in adsorption capacity at pH > 7 could be due to both the adsorption of ions onto the surface of adsorbent and precipitation. It is considered that SWCNT-COOH and SWCNT surfaces have a maximum adsorption capacity at pH= 5, if the precipitated amount is not considered. Therefore, the optimum pH was found to be 5 for the absorption of Pb(II), Cd(II) and Cu(II) ions. The metal ion in aqueous solution may undergo solvation and hydrolysis. The process involved for metal adsorption is as follows [45]:

\[
M^{2+} + nH_2O \rightleftharpoons M(H_2O)_n^{2+} \quad (3)
\]

\[
M(H_2O)_n^{2+} \rightleftharpoons [M(H_2O)_{n-1}(OH)]^+ + H^+ \quad (4)
\]

\[
M^{2+} + nH_2O \rightleftharpoons K_a[M(H_2O)_{n-1}(OH)]^+ + H^+ \quad (5)
\]

The \(pK_a \) values for Pb(II), Cu(II) and Cd(II) ions were 7.7, 9.3 and 10.1, respectively [46]. Perusal of the literature on metal speciation showed that the dominant species were M(OH)\(_2\) at pH>6 and M\(^{2+}\) at pH<6.0. The maximum percentage of adsorption for metal ions was observed at pH=5. By further increase in pH, adsorption decreased probably due to the formation of lead, copper and cadmium hydroxides and chemical precipitation [47-49].

3.3. Effect of ionic strength

The ionic strength of 0.01, 0.02, 0.03, 0.04 and 0.05 M from NaNO\(_3\) were used to investigate the ionic strength effect on Pb(II), Cd(II) and Cu(II) ions adsorption percentage onto SWCNT-COOH and SWCNTs surfaces. It is to be mentioned that only in this part, NaNO\(_3\) was used to adjust the ionic strength and in other parts of the experiments, the effect of ionic strength
was ignored. Figure 4 shows that the percentage of ion adsorption decreases with the increasing of ionic strength, so that the percentage of adsorption decreased from 70.03, 60.97 and 47.76 to 68.27, 58.33 and 45.69 by SWCNT-COOH and 27.17, 19.07 and 16.97 to 26.06, 18.11 and 15.11 by SWCNTs for Pb(II), Cd(II) and Cu(II) ions, respectively.

This phenomenon could be due to two reasons: (1) Pb(II), Cd(II) and Cu(II) ions formed electrical double layer complexes with CNTs as adsorbents, which favored the adsorption when the concentration of background electrolyte was decreased. This implies that the interaction between the functional groups of CNTs and metal ion has mainly ionic nature, which is in good agreement with ion exchange mechanism; and (2) the ionic strength of solution influence the activity coefficient of metal ion, thus limits their transfer to the surface of adsorbents [50-51].

3.4. Effect of temperature on ion adsorption

Figure 5 shows adsorption percentage of Pb(II), Cd(II) and Cu(II) ions onto as a function of temperature. The percentage of adsorption experiment were conducted at 283, 293, 303 and 313 K to investigate the effect of temperature, with the initial concentration of 20 mg/L for each ion, adsorbent dosage of 50 mg/L and pH=5.
Fig. 5. Effect of temperature on the percentage of ion adsorption, initial concentration of each ion was 20 mg/L; pH 5; contact time, 120 min and adsorbent dosage 50 mg/L.

It was observed that the maximum adsorption percentage for each ion increased. As Figure 5 shows, the ion percentage of adsorption yield onto adsorbent surfaces increases by increasing of temperature. When temperature increased from 283 to 313 K, percentage of adsorption for Pb(II), Cd(II) and Cu(II) ions, increased from 65.23, 54.90 and 42.25 to 80.04, 69.89 and 53.26 onto SWCNTs-COOH, respectively, and from 23.79, 17.89 and 16.01 to 31.25, 23.37 and 21.37 respectively onto SWCNTs. An increase in the amount of equilibrium adsorption of each ion with the rise in temperature may be explained by this fact that the adsorbent sites were more active at higher temperatures. Also it can be explained by the fact that the kinetic energy of cations increases at higher temperatures, therefore, the contact between each ion and the active site of adsorbent is sufficient, leading to an increase in adsorption efficiency. This condition shows that adsorption occurs more physically rather than chemically. Similar trends have also been observed by other researchers for aqueous phase adsorption [52]. In addition, the rise of adsorption with temperature may enlarge the pore size of carbon nanotube to some extent, which may also effect carbon adsorption capacity [52].

3.5. Adsorption isotherm

Figure 6 shows the adsorption isotherms of Pb(II), Cu(II) and Cd(II) ions onto SWCNT-COOH and SWCNTs surfaces at pH=5. The initial concentrations of each ion were 10, 20, 30, 40 and 50 mg/L and T=293±1 K.
Fig. 6. The percentage of adsorption isotherm of Pb(II), Cu(II) and Cd ions onto SWCNT-COOH and SWCNTs surfaces. Initial concentration of each ion was 10, 20, 30, 40 and 50 mg/L; pH 5; contact time, 120 min and adsorbent dosage 50 mg/L.

It is apparent that the adsorption percentage increased along with the increasing of C_e and maximum value of percentage adsorption were found to be 78.73, 65.21 and 50.31 for Pb(II), Cd(II) and Cu(II) ions on SWCNT-COOH respectively. Although the specific surface area of SWCNTs and SWCNT-COOH surfaces is almost the same (~400 m2/g), but SWCNT-COOH adsorbent appears more efficient than SWCNTs for the adsorption of ions. This could be attributed to the existence of functional groups, the wettability of SWCNT-COOH and the ability to form complex with ions [52].

The adsorption data can then be correlated with Langmuir and Freundlich isotherm model equations. In this study, two classical adsorption models were employed to describe the ion adsorption equilibrium. Langmuir isotherm is valid for monolayer adsorption onto a surface with a finite number of identical sites. If ion adsorption follows Langmuir model, the adsorption can be expressed as [53]:

$$q_e = \frac{q_mC_eK_d}{1 + K_d} \quad (6)$$

Eq. (6) can be transformed into a linear equation as follow:

$$\frac{C_e}{q_e} = \frac{1}{K_dq_m} + \frac{1}{q_m}C_e \quad (7)$$

Where, C_e (mg/L) is the equilibrium concentration of ion in the solution, q_e (mg/g) is the adsorption capacity at equilibrium, q_m (mg/g) is the maximum adsorption capacity and K_d (L/mg) is the effective dissociation constant that relates to the affinity binding site. The values of q_m and K_d are obtained from the intercept and the slope of the linear plot of C_e/q_e against C_e.

Freundlich equation is an empirical relationship, where it is assumed that the adsorption energy of ion binding to a site on an adsorbent depends on whether or not the adjacent sites are already occupied. This isotherm can be described as follow [54]:
\[q_e = K_F C_e^{1/n} \]
(8)

Eq. (8) can be transformed into a linear equation form as follows:

\[\ln q_e = \ln K_F + 1/n \ln C_e \]
(9)

Where, \(K_F \) and \(n \) are physical constants of Freundlich adsorption isotherm. Also, \(K_F \) and \(n \) are indicators of adsorption capacity and adsorption intensity, respectively. The slope and intercept of linear Freundlich equation are equal to \(1/n \) and \(\ln K_F \), respectively.

Table 1 summarizes the coefficients of Langmuir and Freundlich isotherms for different temperature and adsorbents.

<table>
<thead>
<tr>
<th>T (K)</th>
<th>Langmuir</th>
<th>Freundlich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(K_d) (L/mg)</td>
<td>(q_m)</td>
</tr>
<tr>
<td>Pb(II) 283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>1.100</td>
<td>90.235</td>
</tr>
<tr>
<td>303</td>
<td>1.4560</td>
<td>92.593</td>
</tr>
<tr>
<td>313</td>
<td>1.516</td>
<td>94.689</td>
</tr>
<tr>
<td>283</td>
<td>1.633</td>
<td>96.017</td>
</tr>
<tr>
<td>293</td>
<td>0.631</td>
<td>27.112</td>
</tr>
<tr>
<td>303</td>
<td>0.691</td>
<td>29.851</td>
</tr>
<tr>
<td>313</td>
<td>0.722</td>
<td>31.235</td>
</tr>
<tr>
<td>283</td>
<td>0.759</td>
<td>33.545</td>
</tr>
<tr>
<td>Cu(II) 283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>1.006</td>
<td>65.125</td>
</tr>
<tr>
<td>303</td>
<td>1.028</td>
<td>68.966</td>
</tr>
<tr>
<td>313</td>
<td>1.060</td>
<td>72.326</td>
</tr>
<tr>
<td>283</td>
<td>1.089</td>
<td>77.002</td>
</tr>
<tr>
<td>293</td>
<td>0.611</td>
<td>19.887</td>
</tr>
<tr>
<td>303</td>
<td>0.638</td>
<td>21.008</td>
</tr>
<tr>
<td>313</td>
<td>0.668</td>
<td>22.871</td>
</tr>
<tr>
<td>283</td>
<td>0.689</td>
<td>24.288</td>
</tr>
<tr>
<td>Cd(II) 283</td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>0.988</td>
<td>50.233</td>
</tr>
<tr>
<td>303</td>
<td>1.002</td>
<td>52.356</td>
</tr>
<tr>
<td>313</td>
<td>1.223</td>
<td>55.337</td>
</tr>
<tr>
<td>283</td>
<td>1.502</td>
<td>58.890</td>
</tr>
<tr>
<td>293</td>
<td>0.352</td>
<td>16.126</td>
</tr>
<tr>
<td>303</td>
<td>0.544</td>
<td>18.868</td>
</tr>
<tr>
<td>313</td>
<td>0.770</td>
<td>21.226</td>
</tr>
<tr>
<td>283</td>
<td>0.913</td>
<td>24.065</td>
</tr>
</tbody>
</table>
Comparison of the R^2 values given in Table 1 indicates that Langmuir isotherm better fits the experimental data than does Freundlich isotherm. The validity of Langmuir isotherm suggests that adsorption is a monolayer process and adsorption of all species requires equal activation energy. As Table 1 shows, K_d increases with increasing of temperature, indicating that adsorption of ions onto SWCNT-COOH and SWCNTs surfaces increases with temperature. The results also implied that the affinity of the binding sites increased with temperature. Moreover, K_d values for various adsorbents followed the order SWCNTs-COOH > SWCNTs, suggesting that the affinity of the binding sites for each ion also followed this order. Freundlich isotherm does not describe the saturation behaviour of adsorbents. Regarding the coefficients of Freundlich model, K_F increased with temperature, revealing that adsorption capacity increased with temperature. Like K_F, n increased with temperature as well. Since all n values obtained from the isotherms exceeded unity, the ions were favorably adsorbed onto SWCNT-COOH and SWCNTs surfaces. The highest values of n were 4.522, 10.003 and 11.089 at 313K for Pb(II), Cu(II) and Cd(II) ions onto SWCNT-COOH and 13.001, 10.788 and 17.055 onto SWCNTs, respectively. These data indicate favorable adsorption at high temperatures. Similar results have been reported by several earlier works for Freundlich constant for ion adsorption onto carbon nanotube adsorbent surfaces [40-41].

The maximum adsorption capacities for monolayer saturation at 313 K were 96.017, 77.002 and 58.889 mg per gram of SWCNTs –COOH surface and 33.548, 24.288 and 24.065 mg for Pb(II), Cu(II) and Cd(II) ions per gram of SWCNTs surface, respectively. Because higher temperatures leading to a higher chance for the ion to be adsorbed onto the adsorbents and an increase in their adsorption capacity, resulting in the enlargement of pore size. Also some researchers indicated that by increasing of temperature, the carbon nanotubes stability and total surface area are increased [55]. Both Langmuir and Freundlich isotherms suggest that adsorption were endothermic. Although Freundlich isotherm provides information about surface heterogeneity and exponential distribution of active sites and their energies, it does not predict any saturation of the surface of adsorbents by the adsorbate [55].

3.6. Thermodynamics of adsorption

Thermodynamic parameters provide additional in-depth information regarding the inherent energetic changes involved during adsorption. To assess the thermodynamic parameters, the adsorption isotherm of Pb(II), Cu(II) and Cd(II) ions onto SWCNT-COOH and SWCNTs surfaces were measured at 283, 293, 303 and 313 K and the changes in thermodynamic parameters of standard Gibbs free energy of adsorption (ΔG^0), standard enthalpy (ΔH^0) and standard entropy (ΔS^0) were calculated from the variation of the thermodynamic equilibrium constant, K_0, with the change in temperature. Thermodynamic constant, K_0, for the adsorption reaction at equilibrium can be defined as:

$$K_0 = \frac{a_s}{a_e} = \frac{\gamma_s q_e}{\gamma_e C_e} \quad (10)$$

Where, a_s and a_e denote activity coefficients of the ions adsorbed onto SWCNT-COOH and SWCNTs as adsorbents and the ions in the equilibrium solution, respectively. q_e is the concentration of ion adsorbed onto the surface (mg/g). C_e is the concentration of considered ion at the equilibrium (mg/L), γ_s and γ_e are the activity coefficients of the adsorbed solute and the solute in the equilibrium solution, respectively. As the concentration of the solute in the solution approaches zero, the activity coefficient, γ, approaches unity. Equation (10) then is written as [56, 57]:
\[K_0 = \frac{a_e}{a_c} = \frac{q_e}{C_e} \quad (11) \]

Where, the values of \(K_0 \) are obtained by plotting \(\ln(q_e/C_e) \) versus \(q_e \) and extrapolating \(q_e \) to zero. Its intercept with the vertical axis gives the values of \(\ln K_0 \). The standard Gibbs free energy of adsorption, \(\Delta G^0 \), is [57]:

\[\Delta G^0 = -RT \ln K_0 \quad (12) \]

\[RT \ln K_0 = T\Delta S^0 - \Delta H^0 \quad (13) \]

\[\ln K_0 = -\frac{\Delta H^0}{R} \frac{1}{T} + \frac{\Delta S^0}{R} \quad (14) \]

Eq. (13) describes how the equilibrium constant, \(K_0 \), varies with the absolute temperature, T, for an equilibrium system and Eq. (14) predicts a linear plot of \(\ln K_0 \) versus \(1/T \) for the reversible adsorption of ions on SWCNT-COOH and SWCNTs surface adsorbents. Figure 7 shows the \(\ln K_0 \) vs. \(1/T \) plot for the adsorption of the ions onto SWCNT-COOH and SWCNTs surfaces at various temperatures.

![Figure 7](image)

Fig.7. \(\ln K_0 \) vs. \(1/T \) plot for the thermodynamic parameters for the percentage of adsorption of Pb(II), Cu(II) and Cd ions onto SWCNT-COOH and SWCNTs surfaces. Initial concentration of each ion was 10, 20, 30, 40 and 50 mg/L; pH 5; (adsorbents dosage, 50 mg/L; contact time, 120 min and T=293±1K).

Table 2 presents the adsorption thermodynamic parameters regard to onto SWCNT-COOH and SWCNTs as adsorbents.
Table 2. Adsorption thermodynamic parameters for the percentage of ion adsorption onto SWCNT-COOH and SWCNTs surfaces adsorbent (Initial concentration of each ion was 10, 20, 30, 40 and 50 mg/L; pH 5; adsorbents dosage, 50 mg/L; contact time, 120 min and $T=293\pm1$K)

<table>
<thead>
<tr>
<th>(K)</th>
<th>ΔG^0 (kJ/mol)</th>
<th>ΔH^0 (kJ/mol)</th>
<th>ΔS^0 (J/molK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb(II)</td>
<td>SWCNTs-COOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>-28.674</td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>-32.116</td>
<td>68.72</td>
<td>344.15</td>
</tr>
<tr>
<td>303</td>
<td>-35.557</td>
<td></td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>-38.999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu(II)</td>
<td>SWCNTs-COOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>-26.649</td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>-29.642</td>
<td>58.07</td>
<td>299.36</td>
</tr>
<tr>
<td>303</td>
<td>-32.636</td>
<td></td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>-35.630</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd(II)</td>
<td>SWCNTs-COOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>-12.925</td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>-14.996</td>
<td>45.67</td>
<td>207.05</td>
</tr>
<tr>
<td>303</td>
<td>-17.066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>-19.137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb(II)</td>
<td>SWCNTs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>-10.350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>-11.817</td>
<td>31.16</td>
<td>146.68</td>
</tr>
<tr>
<td>303</td>
<td>-13.284</td>
<td></td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>-14.751</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu(II)</td>
<td>SWCNTs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>-8.418</td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>-9.342</td>
<td>18.72</td>
<td>95.64</td>
</tr>
<tr>
<td>303</td>
<td>-10.265</td>
<td></td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>-11.189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cd(II)</td>
<td>SWCNTs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>283</td>
<td>-8.356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>293</td>
<td>-9.145</td>
<td>13.87</td>
<td>78.45</td>
</tr>
<tr>
<td>303</td>
<td>-9.913</td>
<td></td>
<td></td>
</tr>
<tr>
<td>313</td>
<td>-10.677</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2 clearly shows that the value of change of the standard enthalpy is positive for the adsorption of the mentioned ions onto SWCNT-COOH and SWCNTs. It is clear that adsorption of Pb(II), Cu(II) and Cd(II) ions on considered adsorbents are endothermic, which is supported by the fact that the content of adsorption increases with temperature from literature. If the heat value of adsorption process ranging is 40-800 kJ/mol, the adsorption is usually chemisorption, yet values less than 40 kJ/mol refer to a physisorption [58].

Usually adsorption of gases onto surface is exothermic. In this study the adsorption of each mentioned ions is endothermic process. This phenomenon could be due to two processes. The hydration of each ion is endothermic process and adsorption of each ion onto both surfaces is

\[y = \ln K_0 + \frac{\Delta H^0}{R \times T} + \frac{\Delta S^0}{R} \]

Ref. [57]
exothermic. The first process is more frequent and due to it all processes are endothermic [58]. Plot of Eq. (14) were determined as 68.72, 58.07 and 45.67 kJ/mol for Pb(II), Cu(II) and Cd(II) ions adsorbed onto SWCNTs -COOH, respectively, and as 31.16, 18.72 and 13.87 kJ/mol onto SWCNTs, respectively. Hence, adsorption of Pb(II), Cu(II) and Cd(II) ions onto SWCNTs -COOH is a chemical process which by SWCNTs, it is a physical process. The positive value of ΔS° is indicative of increased randomness at adsorbent-adsorbate interface during the adsorption of Pb(II), Cu(II) and Cd(II) ions onto SWCNT-COOH and SWCNTs surfaces. The increase in the adsorption capacity of the adsorbent with temperature is attributable to the enlargement of pores or activation of the adsorbent surface [59]. Also, ΔG° reflects the feasibility of the adsorption and the standard entropy determines the disorderliness of adsorption at solid-liquid interface. The ΔG° values were negative at all temperatures of the experiments, verifying that the adsorption of all ions onto SWCNT-COOH and SWCNTs was spontaneous and thermodynamically favorable. Also, a more negative standard Gibbs energy implies a greater driving force of adsorption, resulting in a higher adsorption capacity. As the temperature increased from 283 to 313 K, Gibbs standard energy got greater negative values. Additionally, the adsorption onto SWCNT-COOH was more spontaneous than by SWCNTs. Hence, the amount of the Gibbs standard energy implied that the adsorption affinity of Pb(II), Cu(II) and Cd(II) ions onto SWCNT-COOH was stronger than that onto SWCNTs, indicating the functional groups such as -COOH on carbon nanotube structures can be useful for adsorption of ions from aqueous solution [60].

4. Conclusion

Batch adsorption experiments were carried out for the adsorption of Pb(II), Cu(II) and Cd(II) ions from aqueous solution using SWCNT-COOH and SWCNTs surfaces as adsorbent. The adsorption characteristics were examined at different contact time, pH, initial ion concentration, ionic strength, temperature and adsorbent type relative to the mentioned ions. The obtained results can be summarized as:

- The amount of each adsorbed ion increases (with) since after 120 min no change was observed in the adsorbed amount, then 120 min was chosen as the best contact time condition for adsorption of Pb(II), Cu(II) and Cd(II) ions.

- The results showed that SWCNT-COOH was a better adsorbent than SWCNTs for having -COOH group. Carboxyl group causes a rise in negative charge on carbon nanotube surface.

- The experiments revealed that the governing factors affecting the adsorption characteristics of all adsorbents are competition of the H⁺ ions with metal ion at low pH values is an important factor. The maximum adsorption was observed at pH=5-6. Also at higher pH (6-8), precipitation of hydroxide species on the adsorbents was more predominant.

- With the increasing ionic strength, adsorption of ions onto SWCNT-COOH and SWCNTs surfaces decreased.

- Langmuir adsorption model is better fitted for the adsorption of Pb(II), Cu(II) and Cd(II) ions on SWCNT-COOH and SWCNTs surfaces adsorbent. The highest monolayer adsorption capacity was obtained as 96.02, 77.00 and 55.89 mg/g for Pb(II), Cu(II) and Cd(II) ions on SWCNTs-COOH, respectively and as 33.55, 24.29 and 24.07 mg/g on SWCNTs, respectively (at 313 K and pH=5).

Thermodynamic studies showed that adsorption of Pb(II), Cu(II) and Cd(II) ions was a spontaneous process and adsorption of ion on the considered adsorbents was an endothermic
process. Further, adsorption on SWCNTs-COOH surface was a chemisorption process, but SWCNTs surface was a physisorption process.

References

[42] Hu, Y., Li, I., Ding, J., Luan, Z., Di, Z. and et al. (2003), Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. *Carbon*, 41, 2787-2792.

